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Zhang, Kechen, Iris Ginzburg, Bruce L. McNaughton, and Ter- decoding problems have been studied previously (Abbott
rence J. Sejnowski. Interpreting neuronal population activity by re- 1994; Bialek et al. 1991; Optican and Richmond 1987; Sali-
construction: unified framework with application to hippocampal nas and Abbott 1994; Seung and Sompolinsky 1993; Snippe
place cells. J. Neurophysiol. 79: 1017–1044, 1998. Physical variables 1996; Zemel et al. 1997; Zohary et al. 1994).
such as the orientation of a line in the visual field or the location of Two main goals for reconstruction are approached in thisthe body in space are coded as activity levels in populations of

paper. The first goal is technical and is exemplified by theneurons. Reconstruction or decoding is an inverse problem in which
population vector method applied to motor cortical activitiesthe physical variables are estimated from observed neural activity.
during various reaching tasks (Georgopoulos et al. 1986, 1989;Reconstruction is useful first in quantifying how much information
Schwartz 1994) and the template matching method applied toabout the physical variables is present in the population and, second,

in providing insight into how the brain might use distributed represen- disparity selective cells in the visual cortex (Lehky and Sejnow-
tations in solving related computational problems such as visual ob- ski 1990) and hippocampal place cells during rapid learning of
ject recognition and spatial navigation. Two classes of reconstruction place fields in a novel environment (Wilson and McNaughton
methods, namely, probabilistic or Bayesian methods and basis func- 1993). In these examples, reconstruction extracts information
tion methods, are discussed. They include important existing methods from noisy neuronal population activity and transforms it to a
as special cases, such as population vector coding, optimal linear more explicit and convenient representation of movement andestimation, and template matching. As a representative example for

position. In this paper, various reconstruction methods that arethe reconstruction problem, different methods were applied to multi-
theoretically optimal under different frameworks are consid-electrode spike train data from hippocampal place cells in freely
ered; the ultimate theoretical limits on the best achievable accu-moving rats. The reconstruction accuracy of the trajectories of the
racy for all possible methods also are derived.rats was compared for the different methods. Bayesian methods were

especially accurate when a continuity constraint was enforced, and Our second goal for reconstruction is biological. Because
the best errors were within a factor of two of the information-theoretic the brain extracts information distributed among the activity
limit on how accurate any reconstruction can be and were comparable of populations of neurons to solve various computational
with the intrinsic experimental errors in position tracking. In addition, problems, the question arises as to which algorithms feasibly
the reconstruction analysis uncovered some interesting aspects of might be used in the brain. Contrary to previous views,
place cell activity, such as the tendency for erratic jumps of the the various reconstruction methods, including the Bayesian
reconstructed trajectory when the animal stopped running. In general,

methods, can be implemented by a simple feedforward neu-the theoretical values of the minimal achievable reconstruction errors
ral network. This demonstrates that biological systems havequantify how accurately a physical variable is encoded in the neuronal
the resources needed to implement the most efficient recon-population in the sense of mean square error, regardless of the method
struction algorithms, which can reach the Cramér-Rao lowerused for reading out the information. One related result is that the
bound under suitable conditions. In addition, our theoreticaltheoretical accuracy is independent of the width of the Gaussian

tuning function only in two dimensions. Finally, all the reconstruction results on minimal reconstruction error become immediately
methods considered in this paper can be implemented by a unified relevant for understanding the accuracy of population coding
neural network architecture, which the brain feasibly could use to in biological systems and its dependence on the tuning pa-
solve related problems. rameters of individual cells.

In this paper, hippocampal place cells serve as a primary
example of the reconstruction problem and are used for test-

I N T R O D U C T I O N ing different methods. Some interesting biological properties
of place cells are revealed by the reconstruction, which illus-

Reconstruction is a useful strategy for analyzing data re- trates the power of this approach for studying populations
corded from populations of neurons, in which external physi- of neurons.
cal variables such as the orientation of a light bar on a screen,
the direction of hand movement in space, or the position of D E S C R I P T I O N O F P L A C E C E L L F I R I N G
a freely moving animal in space are estimated from brain

Representative example of reconstructionactivity. Reconstruction is sometimes called decoding, where
‘‘coding’’ describes the tuning of neuronal responses to the Position reconstruction based on hippocampal place cell

activity provides an excellent example that captures all majorvariables of interest. A wide range of neural coding and
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aspects of reconstruction (Wilson and McNaughton 1993). Basic description
The task is to infer the position of the rat’s head based on

The goal of this section is to quantify the basic tuningthe patterns of spiking activity from simultaneously recorded
property of a place cell. Reconstruction only needs two distri-place cells. As illustrated in Fig. 1, a place cell is often quiet
bution functions derived from the data. The first one is theand fires maximally only when the animal’s head is within
probability P(x) for the animal to visit each spatial positioncertain restricted regions in the environment, called the place
x Å (x, y), a vector that denotes the position of the animal’sfields (McNaughton et al. 1983; Muller et al. 1987; O’Keefe
head on the horizontal plane. In our dataset, x was discretizedand Dostrovsky 1971; Olton et al. 1978).
on 256 1 256 grid and sampled at 20 Hz. Let N(x) be theSuccessful simultaneous recordings from many cells in number of times the animal was found at position x duringthe hippocampus of a freely behaving rat make it possible a time period, say, of several minutes; then the probability of

to study population activity and reconstruction in single tri- finding the animal at x can be estimated as
als. In most other systems, such as recordings from motor
cortex during reaching, neurons usually are recorded sequen- P(x) Å N(x)

(
x

N(x)
(1)

tially during the same task, and the population is examined
later under the assumption that the cells would have similar

This probability is sometimes called spatial occupancy.statistics if recorded simultaneously. In single-trial recon-
The second distribution needed by reconstruction is the av-struction, phenomena such as erratic jumps in reconstructed

erage firing rate f (x) of a place cell for each position x . Thetrajectory easily can become apparent (Fig. 9) .
firing rate distribution f (x) is sometimes called the tuningIt is important to realize that the general formulation of
function or the firing rate map (Fig. 1). Let S(x) be the totalthe reconstruction problem does not rely on any unique prop-
number of spikes collected while the animal was at locationerties of place cells. In other words, the same approach used
x , then the average firing rate at x is estimated asfor place cells could be applied to other reconstruction prob-

lems without essential modification. The vector x , which is f (x) Å S(x)
N(x)Dt

(2)
interpreted in these recordings as the position of the animal
in the maze, could in general be interpreted as any external where Dt is the time interval of position tracking so that
physical variables with which neural activity is correlated. N(x)Dt is the total time spent at position x . The derived

firing rate map f (x) was smoothed by convolving it with a
Gaussian kernel (Parzen window) with a standard deviation

Place cell data of 1 cm. In theory, the time average of the firing rate should
equal to the spatial average fmean Å (

x
f (x)P(x) . This is no

The experimental data analyzed in this paper were ob-
longer exactly true after the aforementioned smoothing, andtained by methods that have been described by Wilson and
therefore can be used as a cross-check.McNaughton (1993), Skaggs, McNaughton, Wilson, and

The firing rate distribution f (x) can be interpreted in termsBarnes (1996), and Barnes, Suster, Shen, and McNaughton
of conditional probability as follows(1997). The accuracy of spike timing data of neurons from

areas CA1 or CA3 of the right hippocampus was 0.1 ms.
f (x) Å fmean

P(xÉ‘‘spike’’)
P(x)

(3)The head position was tracked by infrared diodes on the
head stage that were sampled at 20 Hz and at a resolution

This is equivalent to Eq. 2 , as is verified readily by usingof 256 1 256 pixels (Ç111 1 111 cm). Several channels
Eq. 1 and the definition of two additional quantities, namely,of hippocampal local field potentials were recorded at 200
the conditional probabilityor 1,000 Hz.

Data were obtained from two young rats while running P(xÉ‘‘spike’’) Å S(x)
(
x

S(x)
(4)

continuously in familiar mazes. Animal 1 was running on the
elevated tracks of a figure-8 maze (Fig. 1) , with clockwise

for an arbitrarily chosen spike to fall into the spatial positionmovement in the upper loop and counterclockwise move-
x , and the overall average firing ratement in the lower loop. The outer dimensions of the maze

were 93.5 1 80.7 cm, and the width of the tracks was 6.4
fmean Å

(
x

S(x)

(
x

N(x)Dt
(5)cm (Fig. 1) . Animal 2 was running on the tracks of a rectan-

gular maze, physically identical to the upper loop of the
figure-8 maze. Both animals stopped briefly at the corners

with (
x

S(x) being the total number of spikes and (
x

N(x)Dtof the mazes for food reward during the recordings.
In reconstruction, the first 7 min of data from animal 1 being the total time of recording. The firing rate distribution

were used to compute firing rate maps and visiting probabili- f (x) describes the intrinsic tendency for the cell to fire at
ties, and the subsequent 7 min of data were used for recon- each position x and is independent of how often the animal
struction. For animal 2, the sampling and testing intervals visits this position.
were 10 min each. For comparison, we also used the second Our method of computing the firing rate map is similar
halves of data for sampling and the first halves for testing. to that in Muller, Kubie, and Ranck (1987). An alternative
In another analysis, the data were divided into consecutive method with adaptive binning has been used by Skaggs,
3-min time blocks, with only a single block chosen for sam- McNaughton, Wilson, and Barnes (1996). Additional con-

sideration of the heading direction and the intrinsic direction-pling, leaving all remaining blocks for testing.

J441-7/ 9k22$$de37 02-03-98 08:39:37 neupa LP-Neurophys



HIPPOCAMPAL PLACE CELL RECONSTRUCTION 1019

F
IG

.1
.

F
ir

in
g

ra
te

m
ap

s
of

25
hi

pp
oc

am
pa

l
pl

ac
e

ce
ll

s
si

m
ul

ta
ne

ou
sl

y
re

co
rd

ed
in

a
ra

t
(a

ni
m

al
1

)
ru

nn
in

g
on

el
ev

at
ed

tr
ac

k
of

a
fi

gu
re

-8
m

az
e,

w
it

h
cl

oc
kw

is
e

m
ov

em
en

t
in

up
pe

r
lo

op
an

d
co

un
te

rc
lo

ck
w

is
e

m
ov

em
en

t
in

lo
w

er
lo

op
,

an
d

sl
ow

in
g

do
w

n
at

co
rn

er
s

fo
r

fo
od

.
R

es
tr

ic
te

d
re

gi
on

s
w

it
h

hi
gh

fi
ri

ng
ra

te
s

ar
e

ca
ll

ed
pl

ac
e

fi
el

ds
.

A
no

th
er

32
si

m
ul

ta
ne

ou
sl

y
re

co
rd

ed
ce

ll
s

in
sa

m
e

an
im

al
w

er
e

ac
ti

ve
du

ri
ng

sl
ee

p
bu

t
vi

rt
ua

ll
y

si
le

nt
on

th
is

m
az

e
an

d
th

er
ef

or
e

w
er

e
no

t
sh

ow
n.

M
ap

s
w

er
e

co
m

pu
te

d
fr

om
7

m
in

of
co

nt
in

uo
us

da
ta

.
R

ec
ip

ro
ca

l
fi

el
ds

w
er

e
ob

ta
in

ed
fr

om
fi

ri
ng

ra
te

m
ap

s
by

us
in

g
a

ps
eu

do
in

ve
rs

e.
In

ea
ch

pl
ot

,
sc

al
in

g
is

li
ne

ar
w

it
h

ze
ro

va
lu

e
co

rr
es

po
nd

in
g

to
0

in
co

lo
r

m
ap

an
d

m
ax

im
um

po
si

ti
ve

va
lu

e
co

rr
es

po
nd

in
g

to
1.

H
er

e
re

ci
pr

oc
al

fi
el

ds
ro

ug
hl

y
re

se
m

bl
e

pl
ac

e
fi

el
ds

,
bu

t
ha

ve
ne

ga
ti

ve
va

lu
es

in
su

rr
ou

nd
in

g
re

gi
on

s.

J441-7/ 9k22$$de37 02-03-98 08:39:37 neupa LP-Neurophys



ZHANG, GINZBURG, MCNAUGHTON, AND SEJNOWSKI1020

ality of place cells (McNaughton et al. 1983; Muller et al. L I N E A R A P P R O A C H : B A S I S F U N C T I O N S

1994) may be formulated by running velocity modulation
Direct basis and reciprocal basisof firing rate as in the next section.

A basis function method uses a linear combination of
fixed templates, or basis functions, with the coefficients in

Firing rate modulation the linear combination proportional to the activity of the
neurons. The template functions can be chosen arbitrarily.The description in the preceding section can be broadened Define ni as the number of spikes fired by cell i within theto incorporate the modulation of firing rate by additional time window, and fi (x) as an arbitrary basis function orvariables other than the position x , such as running speed, template function associated with this cell. The basic compu-the heading direction, and the theta rhythm. For our dataset, tation is the linear sumincluding firing rate modulation only slightly improved re-

∑
i

nifi (x) (8)construction accuracy.

RUNNING VELOCITY. The firing rate of a place cell typically
which is a distribution function over two-dimensional (2-increases with running speed and also depends on the head-
D) physical space indexed by x . The peak position of thising direction when movement is confined to a narrow track
distribution can be taken as the reconstructed position x̂ of(McNaughton et al. 1983). Both the effects of speed and
the animal; that isdirection can be modeled as multiplicative modulation of

firing rate by the running velocity. For our dataset, the ani- xP basis Å argmax
x

∑
i

nifi (x) (9)
mals run mostly in one direction, and we need only to con-
sider the firing rate modulation by speed. where argmax means the value of x that maximizes the

In general, suppose the average firing rate f (x , v) of a function.
cell at position x also depends on the instantaneous running The basis function framework encompasses existing meth-
velocity v . Consider multiplicatively separable firing rate ods such as the population vector method (Georgopoulos
modulation of the form et al. 1986), the template matching method (Lehky and

Sejnowski 1990; Wilson and McNaughton 1993), and thef (x , v) Å F(x)G(v) (6)
optimal linear estimator (Salinas and Abbott 1994) as spe-
cial cases. A more detailed discussion of these methods fol-where functions F(x) and G(v) depend on x and v only,
lows in a later section.respectively. The simplest case is linear speed modulation

The major question in this approach is how to choose
f (x , v) Å F(x)(a£ / b) (7) template functions with minimal reconstruction error. It is

useful to make a distinction between a direct basis and a
That is, G(v) Å a£ / b is a linear function of the speed reciprocal basis. A direct basis is identified with the firing
£ Å ÉvÉ, with a and b being constant. rate distribution, which can be measured experimentally. A

Equation 7 of linear speed modulation is a reasonable reciprocal basis, which arises naturally in minimizing the
approximation for place cells, at least when averaged over mean square error, is related to the Moore-Penrose pseudoin-
a population (McNaughton et al. 1983) (see also Fig. 8) . verse. Here reciprocal means that applying the pseudoinverse
A similar modulation by speed occurs for cells in the motor twice reverts back to the original basis.
cortex of monkeys. Schwartz (1993, 1994) has shown that To formalize the method, let fi (x) be the average firing
adding up the population vector head to tail approximately rate of the cell i when the animal is at position x . Then, by
reproduces the hand trajectory. This implies that the length definition, the expected number of spikes ni this cell fires
of the population vector is roughly proportional to reaching within a time window of unit length should be
speed. Thus to a first approximation, the reaching speed

ni Å ∑
x
r(x) fi (x) (10)modulates the average firing rate linearly also in the motor

cortex.
where the distribution function r(x) describes the position

THETA RHYTHM. The timing of spike firing relative to the of the animal and is 1 at the animal’s current position and
phase of the theta waves in the hippocampal local field po- is zero elsewhere. Equation 10 remains valid even when
tential encodes additional information about the location of r(x) is an arbitrary probability distribution density.
the rat (Brown et al. 1996; Jensen and Lisman 1996; The goal is to recover the position distribution r(x) by
O’Keefe and Recce 1993; Samsonovich and McNaughton combining some fixed template function fi(x) associated
1996; Skaggs et al. 1996; Tsodyks et al. 1996). Using phase with each cell i. For an ideal reconstruction, we should have
information would be equivalent to splitting a single place
field into several smaller regions while preserving the total r(x) Å ∑

N

iÅ1

nifi (x) (11)
number of spikes. How this might affect reconstruction accu-
racy is described quantitatively by Eq. 53 . However, infor-

for an arbitrary position distribution r(x) . In practice, wemation from field potential recordings was not used here
seek an approximate reconstruction by minimizing the error.because with 20–30 simultaneously recorded cells, the opti-

To find the optimal template functions gi(x) , we use vec-mal time window for reconstructing position wasÇ1 s (Fig.
tor-matrix notation to rewrite Eq. 10 as6), which spanned around 8 theta cycles and averaged out

the phase information from a single cycle. n Å FTIk (12)
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FIG. 2. Snapshots of reconstructed dis-
tribution density for position of a rat (ani-
mal 1) as compared with its true position.
True position occupied a single pixel on
64 1 64 grid, corresponding to 111 1 111
cm in real space. Probabilistic method
(Bayesian 1-step) often yielded a sharp dis-
tribution with a single peak, whereas direct
basis method typically led to a broader dis-
tribution with multiple peaks. Total num-
bers of spikes collected from all 25 cells
for three snapshots were 5, 22, and 31, re-
spectively. Time window for each snapshot
was 0.5 s.

where n Å (n1 , n2 , . . . , nN)T is a column vector, F Å [ f 1, The reciprocal nature of the pseudoinverse can be more
clearly seen using singular value decomposition (Golub andf 2, . . . , fN] is a matrix with each column vector fi obtained

by concatenating all the pixels in the firing rate map fi(x) . Van Loan 1996). Starting from the expansion F Å UDVT ,
where U and V are orthogonal matrices and D is a rectangu-The exact method of the concatenation does not affect the

final result, as long as it is used consistently. Ik is the k th lar diagonal matrix, we immediately obtain G Å UD †VT ,
where D † is the diagonal matrix obtained from DT by replac-column of the identity matrix I . The sole nonzero element

of Ik represents the pixel of the animal’s position after the ing each nonzero element si with its inverse 1/si , hence
the reciprocal property. The familiar method of computingconcatenation. The requirement Eq. 11 for perfect recon-

struction now becomes pseudoinverse from the normal equation

Ik Å Gn Å GFTIk (13) GFTF Å F (17)

where, in the last step, Eq. 12 has been used, and matrix by inverting the correlation matrix FTF yields identical re-
G Å [g1, g2, . . . , gN] is constructed in the same way as F , sults, provided that the matrix is not singular or near singular.
and each column vector gi corresponds to the basis function It follows from Eq. 17 that the firing rate maps themselves
gi(x) to be determined. If Eq. 13 holds true for all k, that become identical to the optimal template functions if they
is, for all positions of the animal, then we must have I Å do not overlap with each other. That is, F Å G or fi (x) Å
GFTI . Thus in general we should try to find G that mini- gi (x) if
mizes

FTF Å I (18)
\GFT 0 I\ 2 (14)

or equivalently, the tuning functions f1(x) , . . . , fN(x) are
where \X \ 2 means the sum of the squares of all the elements uncorrelated
of matrix X . The solution to this least-mean-square problem

∑
x

fi (x) fj(x) Å Cdij (19)is well known

G Å F†T (15)
where C is a proportional constant and dij is Kronecker delta
that equals 1 when i Å j and 0 otherwise. The conditionswhere † denotes Moore-Penrose pseudoinverse and T de-
for orthogonality Eq. 18 or Eq. 19 are approximately satisfiednotes transpose. F and G are reciprocal in the sense that we
for the recordings in Fig. 1, which explains why the recipro-also have
cal fields look similar to the place fields (direct basis) andF Å G†T (16)
why the corresponding performances are also similar (Figs.
3 and 5).In other words, applying the pseudoinverse and transpose

twice returns to the original basis. An example of reciprocal In the above analysis, only the case where the animal is
equally likely to visit any position x has been considered;basis functions for place fields is shown in Fig. 1.
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FIG. 3. True X and Y positions of animal 1
running on figure-8 maze as compared with posi-
tions reconstructed by different methods with 25
place cells. Same 60-s segment is shown in all
plots. Time window for reconstruction was 0.5 s,
which was moved forward with a time step of 0.25
s. For a fair comparison of different methods, if
none of 25 cells fired within time window, recon-
structed position at preceding time step was used.
Probabilistic or Bayesian methods were especially
accurate and erratic jumps in reconstructed trajec-
tory were reduced by a continuity constraint by
using information from two consecutive time
steps.

that is, the probability distribution P(x) is assumed to be two motoneurons each of which, when activated alone, will
drive movement in the direction f1 or f2 , respectively. Weuniform. In this case, the direct basis is the firing rate map

fi (x) Å fi (x) , and the optimal template function that mini- call fi the driving direction of neuron i. Assume that the two
neurons are activated randomly and independently and thatmizes the mean square error is the reciprocal basis fi (x) Å

gi (x) given by Eq. 15 . For nonuniform P(x) , instead of the actual movement is the vector sum
using the raw firing rate maps fi (x) as the basis functions, f Å n1f1 / n2f2 (22)
choose

where n1 and n2 are the activity of the two neurons relative
fi (x) Å fi (x)P(x) (20) to their resting levels.

This weights the basis functions by the prior probability for
the animal to visit each position. As expected, simulations
confirm that this modification reduces reconstruction error.
Similarly, we can use

fi (x) Å gi (x)P(x) (21)

as the reciprocal basis functions. Other modifications of the
reciprocal basis are considered in APPENDIX A and compared
in Table 1. In our comparison of different methods in Figs.
3 and 5, the simpler Eqs. 20 and 21 were used.

In summary, given the numbers of spikes (n1 , n2 , . . . , nN)
fired by all the cells during a given time interval, combine the
chosen basis functions fi (x) linearly as (

i
nifi (x) , and then

take the peak position x̂ as the reconstructed position of the
rat as described by Eq. 9 . The whole trajectory is constructed
by sliding the time window forward (Fig. 3) . FIG. 4. A hypothetical two-neuron motor system showing distinction

between driving directions and preferred directions, which form a pair of
reciprocal vector bases. Apparent preferred directions differ from true driv-Simple example of reciprocal basis
ing directions unless system is orthogonal. Here reciprocity means that if

The reciprocal basis method is illustrated by a hypothetical vectors g1 and g2 are taken as driving directions, then vectors f1 and f2 will
become apparent preferred directions.example of coding in the motor system (Fig. 4) . Imagine
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HIPPOCAMPAL PLACE CELL RECONSTRUCTION 1023

Suppose that both the activity of one neuron and the over- be described by a vector f Å ( f 1(x) , f 2(x) , . . . , fN(x)) .
A vector template is stored for each position x and is laterall movement are being measured. How is the activity of

this neuron correlated with the actual movement direction? used to match the actual number of spikes fired by these
cells within a time window: n Å (n 1, n 2, . . . , nN) . DuringEach neuron i will appear to have a cosine directional tuning

with a fixed preferred direction gi , which, however, is differ- reconstruction, the matching method searches for the posi-
tion in which the dot product nrf is maximized. This isent from the true driving direction fi . To see why this is the

case, write the driving directions f1 and f2 as column vectors equivalent to maximizing nrf Å (
i

ni fi (x) using fi (x) as
and define F Å [f1 , f2] as a 2 1 2 matrix. Equation 22 is

basis functions. In other words, the reconstructed positionequivalent to
is

F Fn1

n2
G Å f (23) xP template Å argmax

x
∑

i

ni fi (x) (27)

from which activities n1 and n2 can be determined by in- Uniform scaling by the numbers of spikes does not affect
verting the matrix F . Thus the peak position or the reconstruction result. Position-de-

pendent scaling such s(x) Å 1/(
i

fi (x)2 can be accommo-Fn1

n2
G Å GT f (24)

dated by redefining each template function fi (x) as
fi (x)s(x) .where
VECTOR METHODS. Vector reconstruction is widely appliedG Å F0T (25)
to data from neural populations. Vector methods such as the

is the transposed inverse. This is a special case of the recipro- population vector and the optimal linear estimator compute
cal basis in Eq. 15 because the pseudoinverse is identical to

x̂vector Å ∑
i

nixi (28)the ordinary inverse for an invertible square matrix. Express-
ing G Å [g1 , g2] in terms of two column vectors g1 and g2 ,

where xi is a fixed vector for each neuron i, and ni is itsthe solution to Eq. 24 becomes
activity level, such as the total number of spikes during a

n1 Å g1rf and n2 Å g2rf (26) time interval or the firing rate.
This method is different from the basis function methodTherefore, the activity ni of each neuron is the inner product

because at each time step, the basis function method yields abetween the actual movement direction f and a fixed direc-
scalar distribution function of the animal’s probable positiontion gi , which is the preferred direction. The driving direc-
over the entire maze, as shown in Fig. 2. By contrast, in thetions and the preferred directions are reciprocal in the same
same situation, a vector method would yield a single vectorsense as in the preceding section. They are identical only
that specifies a single point on the maze. On the other hand,when the two driving directions are orthogonal. In general,
after being discretized and concatenated, the relation be-Eq. 25 means FTG Å I (unit matrix) , or equivalently, f 1rg1
tween the direct and reciprocal basis functions is similar toÅ f 2rg2 Å 1 and f 1rg2 Å f 2rg1 Å 0. That is, in general,
that between the population vector and the optimal linearthe preferred direction g1 of neuron 1 is always perpendicular
estimator (Georgopoulos et al. 1986; Salinas and Abbottto the driving direction f 2 of neuron 2, and vice versa. The
1994; Sanger 1994).distinction between a pair of reciprocal vector bases is equiv-

The basis function framework includes the populationalent to that between contravariant and covariant tensors
vector method as a special case in the sense that the perfor-(Pellionisz 1984; Pellionisz and Llinas 1985).
mance of population vector decoding is identical to combin-The biological meaning of a reciprocal basis is not always
ing cosine functions as the template functions. The directionas clear as in the simple example given above. The reciprocal
of the population vector x̂vector in Eq. 28 is identical to thefield for each place cell depends not just on the place field
peak position of the following scalar functionof that cell but also on all other cells in the population. If

cells work together in groups or modules that are relatively c(x) å ∑
i

nifi (x) (29)
independent of each other, then the reciprocal pairs should
only include those cells in the same group. A different group- where vector x is a free variable in the same space as x̂vectoring can affect the shapes of the reciprocal fields. The recipro- but has unit length, and the template function
cal fields as shown in Fig. 1 are meaningful only with respect

fi (x) å xirx (30)to those 25 cells in question and are therefore only a theoreti-
cal construct. Nonetheless, the concept of reciprocity they is a cosine function of the angle between the two vectors.
illustrate might have biological implications. In other words, the direction of the reconstructed vector

defined by Eq. 28 also can be computed by
Special cases of basis functions

xP vector /ÉxP vectorÉ Å argmax
x

c(x) (31)

TEMPLATE MATCHING. The template matching method for
reconstruction has been used for modeling stereo hyperacu- where Éx̂vectorÉ is the length of the vector x̂vector . To see this,

take the dot product of the both sides of Eq. 28 with theity (Lehky and Sejnowski 1990) and place cells (Fenton
and Muller 1997; Wilson and McNaughton 1993). This unit vector x and then use the definitions in Eqs. 29 and 30

to obtain c(x) Å xr x̂vector , which is maximized only whenmethod is equivalent to the direct basis method. At each
fixed position x , the average firing rates of all the cells can the unit vector x is aligned with x̂vector . Therefore basis func-
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tions with cosine tuning can precisely implement a vector tuning, and by Ginzburg (Gerrard et al. 1995) and Brown
(Brown et al. 1996) to place cells.method (see also Salinas and Abbott 1994).

Two optional supporting models can be used with Bayes-POPULATION VECTOR WITH SCALING. For place cells, the
ian reconstruction. The first is the tuning model, which ispopulation vector needs to be scaled by the total activity so
especially useful when data sampling is sparse. Brown,that the reconstructed position
Frank, and Wilson (1996) used Gaussian tuning model in
their reconstruction, and we used a Gaussian tuning model

xP vector Å
(
i

nixi

(
i

ni

(32) for estimating the information-theoretical limit on recon-
struction accuracy. In our reconstruction, the tuning func-
tions were determined empirically without assuming an ex-where xi is the center of the place field of cell i. This method
plicit analytical model. A second option for Bayesian recon-has been considered by several authors (Abbott and Blum
struction is the spike generation model. Because of the low1996; Blum and Abbott 1996; Burgess et al. 1994; Muller
firing rates of place cells, we used the Poisson firing modelet al. 1987). It will be shown later that the scaling in Eq.
in our reconstruction. Bayesian reconstruction using Poisson32 can be justified by the Bayesian method.
spike statistics was first used by Sanger (1996). Alterna-The two forms of population vectors in Eqs. 28 and 32
tively, without using an explicit spike generation model, thehave different physical meanings. A vector representing di-
stimulus-response relation can be obtained empirically as arection will be called a directional vector, and a vector repre-
look-up table (Földiák 1993).senting spatial position will be called a positional vector. If

we scale a directional vector by an arbitrary scalar, the resul-
tant vector still points in the same direction, but scaling a Basic method
positional vector will lead to a different position. Vector

Assume that using the methods in the preceding sectionreconstruction methods are most suitable for reconstructing
we have measured the firing rate maps f1(x) , f2(x) , . . . ,a directional vector. When reconstructing position in 2-D
fN(x) of a population of N place cells as well as the animal’sspace, a vector method can produce implausible results, even
position distribution P(x) during a period of time. At anafter scaling by total activity (Fig. 3) . We return to this
arbitrary later time t, given the numbers of spikes fired bypoint later.
these place cells within the time interval from t 0 t /2To further illustrate the difference between the basis func-
to t / t /2, where t is the length of time window, the goaltion method and a population vector, consider the special
is to compute the probability distribution of the animal’scase in which every place field has the same Gaussian tuning
position at time t . Notice that what is to be computed herefunction fi (x) Å G(x 0 xi ) , where xi is the center of the
is a distribution of positions instead of a single position; weplace field of cell i. To find the peak position of
always can take the most probable position, which corre-(

i
ni fi (x) , set its derivative with respect to x to zero. This

sponds to the peak of the probability distribution, as the
leads to most likely reconstructed position of the animal (Fig. 2) .

Let the vector x Å (x, y) be the position of the animal,
and the vector n Å (n1 , n 2, . . . , nN) be the numbers ofxP basis Å

(
i

nixiG(xP basis 0 xi )

(
i

niG(xP basis 0 xi )
(33)

spikes fired by our recorded cells within the time window,
where ni is the number of spikes of cell i. The reconstruction

which can be compared with Eq. 32. Because each is based on the standard formula of conditional probability
G( x̂basis 0 xi ) is small unless the estimated position x̂basis is

P(xÉn)P(n) Å P(nÉx)P(x) (34)sufficiently close to the place field center xi , the overall
effect may be interpreted as a population vector with an The goal is to compute P(xÉn) , the probability for the ani-
additional weighting scheme in favor of those place fields mal to be at position x given the numbers of spikes n . P(x)
centered close to the estimated position. Consequently, an is the probability for the animal to be at position x , which
occasionally active cell with a place field far away from the can be measured experimentally. The probability P(n) for
estimated position does not affect the final result of the basis the numbers of spikes n to occur can be determined by
function method as much as in the case of a population normalizing the conditional probability P(xÉn) over x and
vector. therefore does not have to be estimated directly.

The key step is to evaluate the conditional probability
P(nÉx) , which is the probability for the numbers of spikesP R O B A B I L I S T I C A P P R O A C H : B A Y E S I A N M E T H O D S

n to occur given that we know the animal is at location x .
Background It is intuitively clear that this probability is determined by

the firing rate maps of the place cells. More precisely, if weThe Bayesian approach is a natural one for reconstruction.
assume that the spikes have Poisson distributions and thatIt is optimal within a probabilistic framework and, as shown
different place cells are statistically independent of one an-here, yields the best reconstruction results for our dataset.
other, then we can obtain the explicit expressionOnce the position dependence of the firing rates of a group

of place cells is known, the Bayes formula directly addresses
P(nÉx) Å ∏

N

iÅ1

P(niÉx) Å ∏
N

iÅ1

(tfi (x)) n
i

ni !
exp(0tfi (x)) (35)the inverse problem: given the firing rates of these cells,

how can we infer the most probable position? Bayesian re-
construction has been applied by Földiák (1993) to visual where fi (x) is the average firing rate of cell i at position x ,

and t is the length of the time window.orientation tuning, by Sanger (1996) to motor directional
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The final formula obtained from Eq. 34 reads from the septal pacemakers (Stewart and Fox 1990). Third,
the Poisson spiking model does not have a refractory period

P(xÉn) Å C(t, n)P(x)S∏
N

iÅ1

fi (x) n
iD expS0t ∑

N

iÅ1

fi (x)D (36) to rule out extremely short intervals. A related finding by
Fenton and Muller (1997) is that place cell firing for similar
movement trajectories in an open environment was morewhere C(t, n) is a normalization factor, which can be deter-
variable that expected from a Poisson distribution. Despitemined by the normalization condition (

x
P(xÉn) Å 1

these limitations, the inhomogeneous Poisson model proved
(Sanger 1996). Optimality of Bayesian reconstruction is to be adequate for the purpose of reconstruction.
considered in APPENDIX C.

INDEPENDENCE OF DIFFERENT CELLS. The activities of twoThe Bayesian reconstruction method uses Eq. 36 to com-
cells are statistically independent only if the joint probabilitypute the probability P(xÉn) for the animal to be at each
of firing is a product of the individual probabilities. For twoposition x , given the numbers of spikes n of all the cells
place cells, 1 and 2, their independence means that at eachwithin the time window. In this probability distribution, the
position xpeak position or the most probable position is taken as the

reconstructed position of the animal. In other words P(n1 , n2Éx) Å P(n1Éx)P(n2Éx) (39)

xP Bayes Å argmax
x

P(xÉn) (37) where n1 and n2 are the number of spikes collected from the
two cells within an arbitrary time window. For the data in

By sliding the time window forward, the entire trajectory of Fig. 1, the majority of the pairs of place cells were approxi-
the animal’s movement can be reconstructed from the time mately independent simply because most place fields did not
varying activity in the neural population. overlap. In other words, most cell pairs seldom fired together.

Thus Eq. 39 may hold for the trivial reason that both sides
are zero. A related consequence is that multiplying placeTesting the assumptions
fields in Bayesian reconstruction typically leads an ex-

The Bayesian reconstruction as applied in Eq. 36 relies tremely sharp distribution, with zero value for most pixels
on two assumptions, namely, Poisson spike distribution and (Fig. 2 and 13). The independence is no longer exactly true
independent firing of different cells. These assumptions are for cells with highly overlapping place fields (cf. Eichen-
reasonable and convenient approximations, although neither baum et al. 1989). In fact, the correlations in the firing of
is precisely true. these cells could be strengthened rapidly by Hebbian-type

learning process (Blum and Abbott 1996; Mehta and Mc-POISSON SPIKE STATISTICS. The Poisson firing model com-
Naughton 1997; Skaggs and McNaughton 1996; Wilson andmonly is used for neuronal spike statistics (Tuckwell 1988).
McNaughton 1994). In such a situation, the independenceIt is equivalent to assuming that the firing is as random as
assumption is only a simplifying approximation for theoreti-possible. If points are distributed randomly over a long time
cal convenience. There is additional information in corre-interval, with equal chance for each point to fall at any
lated firing that could be exploited to improve the accuracylocation independently of each other, then the number of
of reconstruction.points contained in a small time window has a Poisson distri-

bution. A direct test for a Poisson distribution is not easy
for place cells because their mean firing rates are low and Continuity constraint: using two time steps
depend on the location, which an animal may visit only

The trajectories reconstructed by all methods suffer fromtransiently. Nonetheless, the interspike intervals can be com-
occasional erratic jumps, which often are caused by lowpared directly with the exponential distribution expected for
instantaneous firing rates of the recorded place cells, espe-a Poisson process. Consider cell i with firing rate map fi (x) .
cially when the animal stops running (Fig. 3) . Clearly, ifAccording to the inhomogeneous Poisson model with mean
all recorded cells stop firing, there is not enough informationfiring rate depending on the position x , the overall probabil-
for accurate reconstruction.ity density for interspike interval s should be

Introducing a continuity constraint can improve recon-
pi (s) Å ∑

x
P(x) fi (x) exp(0s fi (x)) (38) struction accuracy by reducing erratic jumps in the recon-

structed trajectory. The possibility that some of the jumps
may reflect real biological processes will be discussed later.where P(x) is the probability for the animal to visit position

x . The above formula implies that dpi (s) /ds õ 0 always To implement the continuity constraint, the reconstructed
position from the preceding time step is used as a guide forholds true; that is, the interspike interval histogram must be

monotonically decreasing. estimating the current position. Speed information can be
used to limit the change in position allowed within a singleApplying Eq. 38 to real place cell data, we found that it

can approximately account for the distribution of intervals time step.
The continuity constraint can be incorporated easily intoú10 ms. But there are several problems. First, the actual

occurrence of briefer intervals was much more frequent than both the Bayesian and the basis function frameworks. Here
we demonstrate the constraint only for the Bayesian method.expected. This means that the Poisson model fails to capture

the tendency for hippocampal pyramidal cells to fire in The one-step Bayesian method presented previously com-
putes the conditional probability P(xtÉnt) for the animal’sbursts, called complex spikes (Ranck 1973). Second, instead

of decreasing monotonically, the actual interspike interval position xt at time step t, given the numbers of spikes nt

within a time window centered also at time t. Here subscriptshistograms tended to have a small bump within the theta
frequency range (4–12 Hz), reflecting the periodic drive denote the time step. When the reconstructed position xt01
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at the preceding time step is used as an additional piece
of information, we can compute the conditional probability
P(xtÉnt , xt01) from the general Bayes formula P(xt01Éxt ,
nt)P(xt , nt) Å P(xtÉnt , xt01)P(nt , xt01) and the assumption
that

P(xt01Éxt , nt) Å P(xt01Éxt) (40)

In the sense of probability, this assumption means that the
activity nt at the current time step cannot directly affect the
position xt01 at the preceding time step. With the help of
simple equalities like P(xt , nt) Å P(xtÉnt) P(nt) and P(nt ,
xt01) Å P(xt01Ént)P(nt) , we immediately obtain the final
equation

P(xtÉnt , xt01) Å kP(xtÉnt)P(xt01Éxt) (41)

where k Å 1/P(xt01Ént) is a scaling factor that does not
depend on xt and can be determined by normalizing P(xtÉnt ,
xt01) over xt .

Now the reconstructed position at time t is

xP t Å argmax
xt

P(xtÉnt , xt01) (42)

Compared with the single step Eq. 36 , the only new factor
in Eq. 41 is the conditional probability P(xt01Éxt) . Intu-
itively, the continuity constraint should require that given
the current location xt , the preceding location xt01 cannot be
too far away. For a precise formulation, we assume a 2-D
Gaussian distribution

P(xt01Éxt) Å C expS0\xt01 0 xt\
2

2s 2
t

D (43)

where the standard deviation st is related to the speed £t at
time t by the formula

FIG. 5. Mean errors of different reconstruction methods applied to data
from two different rats. Errors all decreased as more cells were used, andst Å KS £t

V D
d

(44)
lowest errors were comparable with intrinsic error of tracking system, which
was about 5 cm (horizontal lines) . Shaded region: reconstruction errorswhere both K and V are constant, and V is a speed so that prohibited by lower bound derived by Fisher information and Cramér-Rao

the ratio in the parentheses is dimensionless. We expect the inequality (Eq. 53) . Each data point and error bar represent average and
standard deviation of mean errors in 40 repetitive trials in which a subsetexponent d Å 1/2 for random walks, and d Å 1 for linear
of cells were drawn randomly from whole sample. Animal 1 ran on figure-movements. The speed £t can be estimated by using the
8 maze; 7 min of data were used for sampling and subsequent 7 min ofapproximate linear relationship between the instantaneous data were used for reconstruction. Animal 2 ran on rectangular maze (upper

mean firing rate and running speed (Fig. 8) or by reading loop of figure-8 maze) and both sampling and reconstructing time intervals
the stored average speed at each position as computed from were 10 min. Time window was 1 s.
previous data. We used the latter method and set £t Å U(xt) ,
where function U(x) stores the average speed at each posi- Incorporating firing rate modulation
tion x .

Under the assumption of multiplicative modulation of fir-In general, if the standard deviation st of the Gaussian
ing rate such as in Eq. 6 , the Bayesian Eq. 36 should beprior is too large, the continuity constraint has little effect.
modified by replacing the fixed tuning function fi (x) of eachOn the other hand, if st is too small, the constraint may
cell i bybecome too restrictive and the reconstructed position might

get stuck in the same position if the real position has moved fi (x) r fi (x)m( t) (45)
away by a distance much larger than st . In our analysis, we

where, for simplicity, the modulation factor m( t) is supposedsimply used d Å 1 for linear movements and confined st to
to be the same for all cells. Here m( t) is written as a functionbetween 20 and 60 cm (good empirical values) . The scaling
of the time step. This general formulation includes morein Eq. 44 was chosen so that st would just reach the allowed
specific variables such as modulation by speed as a specialmaximum of 60 cm at top running speed. For generality, we
case. Note that the modulation factor can be estimated di-did not include any bias for the direction of movement. As
rectly from spike data using the approximation.shown in Figs. 3 and 5, the continuity constraint is effective

in reducing reconstruction errors caused by erratic jumps. m( t) É F( t) /Fmean (46)
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TABLE 1. Relative mean errors of different reconstructionwhere F( t) is the instantaneous firing rate averaged over all
the cells and Fmean is the average of F( t) over time. The methods
modified Bayesian formula reads

Method Animal 1 Animal 2 Key Equations
P(xÉn) Å C *P(x)S∏

N

iÅ1

fi (x) n
iD expS0m( t)t ∑

N

iÅ1

fi (x)D (47)
Population vector 10.61 9.41 (32)
Direct basis 8.80 7.66 (9) and (20)where factors independent of the position x have been ab- Reciprocal basis 8.72 7.15 (9) and (21)

sorbed in the constant C * . Modified basis
(noiseless) 8.83 6.10 (A1) and (A4)

Modified basisRelationship to basis functions
(noise included) 8.76 4.84 (A1) and (A5)

Probabilistic 1-step 6.62 2.78 (36) and (37)GENERAL EQUIVALENCE. In general, the performance of all
Probabilistic 1-stepbasis function methods can be mimicked by the Bayesian

(modulated) 6.37 2.62 (36), (37) and (47)method if appropriate template functions are used. To imple-
Probabilistic 2-step 2.39 2.02 (41) and (42)

ment the sum (
i

nif(x) with the basis functions fi (x) , Probabilistic 2-step
(modulated) 3.08 1.97 (41), (42), and (47)choose the tuning function Theoretical minimal
error 1 1 (53)fi (x) Å exp(fi (x)) (48)

Actual values of theoretical minimal errors for animals 1 and 2 wereand the prior probability for spatial occupancy
2.94 cm and 2.09 cm, respectively. Movement trajectory from 2nd half
session was reconstructed by using data from 1st half session (7 min forP(x) Å expSt ∑

i
fi (x)D (49)

animal 1 and 10 min for animal 2). Time window was 1 s and spatial grid
was 64 1 64.

where t is time window. Then the Bayesian Eq. 36 becomes

P(xÉn) Å C expS∑
i

nifi (x)D (50) tatively in Table 1 and Fig. 5. The effects of various parame-
ters are discussed later.

The reconstruction error of the direct basis method for aIts peak position is identical to that of (
i

nif(x) because the
given number of cells is similar to that reported by Wilson

exponential function is monotonic. and McNaughton (1993). This result makes sense because
Conversely, the Bayesian method also can be imple- of the essential equivalence between the matching method

mented in a basis function framework, provided that a con- and the direct basis method as discussed before.
stant bias is allowed. This relationship will be considered in The linear method with a reciprocal basis only improved
detail in our later discussion on network implementations. slightly the performance of the direct basis because the place
RELATIONSHIP WITH POPULATION VECTOR WITH SCALING. Un- cells were mostly orthogonal and the two sets of basis func-
der special assumptions, the Bayesian method can lead to tions were quite similar to each other (Fig. 1) . Further modi-
the population vector method with scaling by total activity. fications of the reciprocal basis sometimes brought addi-
This scaling is needed for reconstruction of a positional vec- tional improvement (Table 1).
tor. Suppose the tuning function for each cell i is a Gaussian Probabilistic methods based on the Bayesian approach
fi (x) Å Ai exp(0\x 0 xi \

2 /2s 2
i ) , where xi is the center of were more accurate. The best method overall was the Bayes-

the place field of cell i and si characterizes its width. Sup- ian method using two time steps to enforce a continuity
pose the centers xi and the peak firing rates Ai are uniformly constraint on the reconstructed position. Its errors were in
distributed in space, then the sum (

i
fi (x) is approximately the range of the intrinsic error of the system for tracking the

animal’s position, which was estimated to beÇ5 cm (Skaggsconstant in space. In this case, the optimal position x̂ in
et al. 1996; Wilson and McNaughton 1993).Bayesian reconstruction is given by

Because reconstruction errors tend to be much larger dur-
ing immobility (see further text) , excluding slow running

xP Å argmax
x

∏
i

fi (x) n
i Å

(
i
(ni /s 2

i )xi

(
i

ni /s 2
i

(51) periods from the analysis can improve reconstruction accu-
racy (Gerrard et al. 1995). However, data exclusion requires

where the second equality can be obtained by setting the additional criteria. For all methods in this paper, we recon-
derivative of the product with respect to x to zero. This is structed the whole trajectory without introducing additional
a generalized population vector, which reduces to the form parameters.
in Eq. 32 when all place fields have identical width; that is,

PROBLEM WITH VECTOR METHODS. The population vector
when all si Å s. This justifies scaling the positional popula- method was the least accurate in reconstructing position in
tion vector by the total activity (

i
ni in Eq. 32 . space for our dataset. The major problem is that it sometimes

yielded implausible results. To see why, imagine that only
two cells were active within the time window; then theR E S U L T S O F P L A C E C E L L R E C O N S T R U C T I O N A N D
weighted average of their positions would lie somewhere onD I S C U S S I O N
the line connecting the two centers of the place fields. The

Comparison of different methods estimated position may be in the center of the maze, which
was never visited by the rat. This is a general problem forRECONSTRUCTION ACCURACY. The performance of different

methods can be compared qualitatively in Fig. 3 and quanti- all vector methods including the reciprocal vector or optimal
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linear estimator. As long as the shape of the environment is
not convex, a vector method may suffer from this problem.
The existence of systematic bias in vector methods has been
pointed out by Muller, Kubie, and Ranck (1987). In contrast,
both the basis function method and the probabilistic method
take into account the entire 2-D distribution functions, and
the final peak always occurs in a plausible position. See also
the discussion after Eq. 33 .
REMARK ON SILENT TIME STEPS. For a fair comparison of
different methods, in all of our simulations we have used
the heuristic that if all the recorded cells were silent within
a time window, the current reconstructed position was set
to be the reconstructed position at the preceding time step.
We needed this rule because when all recorded cells are
silent within the time window, all basis function methods
fail, whereas the Bayesian methods are robust. With a time
window of 0.5 s,Ç15% of the time steps contained no spike
in animal 1, and the percentage was only Ç0.2% in animal
2. For a time window of 1 s, the percentages dropped to 4.3
and 0% for animals 1 and 2, respectively. There were fewer
silent time steps in animal 2 because its maze was smaller,
but there were more cells so that the overall average firing
rates were higher than that of animal 1.

Effects of parameters

NUMBER OF CELLS. When more cells were used in recon-
struction, the errors tended to decrease (Fig. 5) . Different
methods maintained their relative accuracy for different
numbers of cells. In theory, the error of various reconstruc-
tion methods should be inversely proportional to the square
root of the number of cells (Eq. 56) . However, the inverse
square root law is valid only when a sufficiently large num-
ber of cells is used, as shown by simulation (Fig. 12). Here
the number of cells was too small to apply the law.1 FIG. 6. Mean error of Bayesian 2-step reconstruction method depends

on time window and shift of its center. A : length of time window wasTIME WINDOW. A time window with a duration ofÇ1 s was
altered systematically, whereas all other parameters were identical to those

a good choice for the Bayesian two-step method for these in Fig. 5 with all cells. B : center of time window (length fixed at 1 s) was
data (Fig. 6A) . The results of other methods were similar shifted relative to current instant of time. Only data from first half session

were used for sampling. Reconstruction was performed on data from both(not shown), although the errors for large time windows
first half session (light gray curves and symbols) and second half sessionsometimes leveled off or only increased slightly. In theory,
(black curves and symbols, with two outlier data points removed). Forthe error is expected to be inversely proportional to the animal 1 , each half session lasted 7 min and for animal 2 each lasted 10

square root of the time window (Eq. 56) . This can account min. For both animals, reconstruction for second half session was most
accurate when center of time window was slightly shifted towards past.for the general tendency for the reconstruction to improve

with a longer time window. However, this theoretical consid-
eration no longer holds when the time window exceeds the

session to that from the second half. As expected, the errorsoptimal size.
for reconstructing the second half were larger than that of

TIME SHIFT. In the Bayesian two-step method, the center of self-reconstruction because all parameters for the reconstruc-
the time window was shifted relative to the current time to tion algorithm were determined using data from only the
see what shift produced the best accuracy (cf. Blair and first half session.
Sharp 1995; Blair et al. 1997; Muller and Kubie 1989; Taube Upon closer examination of Fig. 6B, it would appear that
and Muller 1995). Alignment of the time window to within the minimum of the curve for reconstructing the second half
100 ms of the current time gave the best results. Figure 6B session (dark symbols) drifted toward the past with respect
compares the reconstruction errors from the first half of the to the minimum of the self-reconstruction curve (light sym-

bols) . To quantify the drift, each curve was fitted with a fifth-
order polynomial, and the minimum of the smooth curve was1 For comparison, we tested square root law on data taken from Fig. 3

in paper by Georgopoulos, Kettner and Schwartz (1988), where error of found. The drift was computed as the difference between
population vector was computed by using up to 475 motor cortical cells. the two minima. For the data shown in Fig. 6B, the value
Errors were given in terms of 95% confidence cone, which was expected of the drift was 066 ms (034 0 32 ms) for animal 1 andto be proportional to mean angular error. Square root law held quite well:

068 ms [093 0 (025) ms] for animal 2. Conversely, whenon log-log scale, a linear fit yielded a slope of 00.519 with a correlation
coefficient of 0.9984, as compared with theoretical slope of 01/2. the second half of data was used to reconstruct the trajectory
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shift of the error direction in correlation with the running
direction.

TIME BLOCKS: SLOW TRENDS. As shown in Fig. 7, when a
single 3-min time block of data was used to reconstruct
the movement trajectory of other time blocks, the average
reconstruction error tended to drift systematically. That is,
reconstruction tended to get worse when going further into
either the past or the future. Because there was no overlap
between the time blocks, the tendency for gradual drift of
error must be caused by gradual changes of either behavioral
or neural origin.

During repetitive running, the mean running speed of both
animals slowly decreased. For animal 2 (on the rectangular
maze), the mean speed dropped from 9.0 cm/s in the first

FIG. 7. Mean reconstruction errors of Bayesian 2-step method in consec-
utive and nonoverlapping time blocks, each lasting 3 min. Only a single
block (shaded) was used as data block for sampling and reconstruction
was performed on all blocks. Graphs for two animals are aligned along
data blocks. Average reconstruction errors tended to change gradually even
though there was no overlap between contiguous time blocks.

of the first half, the minimum appeared to drift towards the
future with respect to the minimum of self-reconstruction
(not shown). Using the same smoothing method, the value
of the drift was 118 ms [107 0 (011) ms] for animal 1
and 93 ms [17 0 (076) ms] for animal 2.

The accuracy for the estimation of the drift was limited
by noise and the flatness of the curves. Nevertheless, the

FIG. 8. Modulation of place cell firing rate by running speed was nearlydirection and the magnitude of the drift were consistent with
linear. A : histogram of speed distribution. Speed was computed after con-the phenomenon of the back shift of place field centers dur-
volving position trajectory with a Gaussian kernel. B : average firing rate

ing repetitive running as reported by Mehta and McNaughton across all cells as a function of binned running speed. For animal 1 , mean
(1997), who directly computed the center of mass of place speed was 19.6 cm/s, mean firing rate was 0.92 Hz, and linear fit was

0.028£ / 0.39 with correlation coefficient r Å 0.991. For animal 2 , corre-fields and found an average back shift of a few centimeters
sponding parameters were 9.3 cm/s, 1.1 Hz, and 0.037£ / 0.73, with r Åduring a running period of the order of several minutes. On
0.992. Only 1st half of data are shown (7 min for animal 1 and 10 min forthe other hand, we compared the spatial distribution of the animal 2) . For 2nd half of data, parameters for animal 1 were 18.0 cm/s,

reconstruction errors as a vector field for different time 0.91 Hz, and 0.033£ / 0.31 with r Å 0.991; for animal 2 , they were 7.0
cm/s, 1.38 Hz, and 0.023£ / 1.25, with r Å 0.956.blocks (see further) , but could not see an obvious systematic

J441-7/ 9k22$$de37 02-03-98 08:39:37 neupa LP-Neurophys



ZHANG, GINZBURG, MCNAUGHTON, AND SEJNOWSKI1030

FIG. 9. Sudden jumps of reconstruction error (here
showing Bayesian 1-step method for animal 1) often
occurred when instantaneous firing rate averaged over
all cells was low, which in turn was correlated with low
running speed. In firing rate diagram, dotted curve shows
inverses of average firing rates; this serves only as a
visual guide to emphasize moments of low firing rates.
Running speed and reconstruction error also had corre-
lates with hippocampal local field potentials, because
sharp waves and theta rhythm are known to be more
prominent during immobility and motion, respectively.
Amplitude diagram shows absolute value of local field
potential signal of channel 1, which was slightly blurred
and shown in arbitrary units. Continuous Fourier power
spectra were obtained by sliding a Hanning window with
a length 10 times the period of each frequency. Channel
1 was sampled at 1 kHz to capture sharp waves, which
can be seen in Fourier power spectra as thin vertical
strips Ç150–200 Hz. Channel 2 was sampled at 200 Hz
to capture theta rhythm, which can be seen in Fourier
power spectra as horizontal dark bands Ç8 Hz with 2nd
harmonics around 16 Hz.

3-min time block to 5.9 cm/s in the last time block, with an OTHER PARAMETERS. The reconstruction results were not
sensitive to parameters like the exact width of the spatialoverall average of 8.2 cm/s across all seven time blocks.

Similarly, the speed for animal 1 (on the figure-8 maze) grid and the exact radius of the blurring kernel as long as they
were kept below the intrinsic error of the tracking system. Indropped from 21.8 to 16.6 cm/s, for an average of 18.9 cm/s.

On the other hand, the mean firing rate increased almost all reconstruction data presented in this paper, we used
64 1 64 grid, corresponding to 111 1 111 cm in real space.monotonically for animal 2 (from 0.86 to 1.34 Hz, for an

average of 1.23 Hz) but showed less clear trend for animal Adding a small constant background value to the firing rate
maps sometimes slightly improved the Bayesian reconstruc-1 (from 0.94 to 0.87 Hz, for an average of 0.92 Hz). There-

fore, slow changes both in behaviors and in neural properties tion.
Finally, in the Bayesian two-step method, the standardcould contribute to the gradual error drift in Fig. 7.

deviation st of allowable jumps in Eq. 44 varied between
FIRING RATE MODULATION. Including firing rate modulation 20 and 60 cm, which gave good performance for the datain reconstruction had only a small effect on the accuracy, of animal 1. Smaller values slightly improved the reconstruc-even though the average firing rate was modulated clearly tion for animal 2, which did not have many erratic jumps
by running speed (Fig. 8) , as reported by McNaughton, in the first place. Changing these values affects the recon-
Barnes, and O’Keefe (1983). struction error only slightly, as long as they are not too small

Including firing rate modulation has no effect on the per- or too large.
formance of basis function methods and the population vec-
tor, provided that an identical modulation factor is used for Discontinuity in reconstructed trajectoryall cells as in Eq. 45. But under the same conditions, the
performance of the modulated Bayesian method (Eqs. 46 As shown in Figs. 3 and 9, reconstruction errors were rela-

tively small most of the time but were punctuated by largeand 47) may slightly improve (Table 1).
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jumps. Most of these jumps occurred when the animal stopped be achieved? The problem is to estimate the maximum
amount of information inherent in the neuronal spikes thatrunning (Fig. 9). This also can be seen in Fig. 3, where the

jumps tend to occur between the corners, the places where the can be extracted for reconstruction.
Fisher information is particularly suitable for addressinganimal stopped for food reward. The results from animal 2

were qualitatively similar, but the jumps in reconstruction er- this question (Paradiso 1988; Seung and Sompolinsky 1993;
Snippe 1996). It differs from Shannon information, whichrors were less frequent because more cells were used in recon-

struction and their average firing rates were higher. has been used more commonly in estimating information
contained in spikes (for a recent review, see Rieke et al.The occurrence of these jumps is correlated with the sev-

eral confounding factors, all of which are apparent in Fig. 1997). Although these two information measures are related,
their relationship is not straightforward (Cover and Thomas9: 1) lower running speed or immobility, which itself is

known to be correlated with; 2) lower firing rates of place 1991). Fisher information depends on the shape and the
slope of the tuning function (see APPENDIX B). In the placecells (McNaughton et al. 1983) (see also Figure 8); 3)

occurrence of large amplitude irregular activity and more cell example, if the spatial bins are scrambled, the amount of
Fisher information would be different. By contrast, Shannonfrequent sharp waves in local field potentials (Buzsáki 1986;

Vanderwolf et al. 1975) (in Fig. 9, the sharp waves can be information would be the same regardless of the ordering
because it is not directly related to the slope of a distributionseen as the thin vertical dark bands Ç150–200 Hz in the

Fourier power spectra of channel 1 of the local field poten- function. Shannon information offers a useful measure on
the distribution of place fields (Skaggs et al. 1993) but notials) ; and 4) the disappearance of the theta rhythm (Vander-

wolf et al. 1975) (in Fig. 9, theta modulation can be seen existing theory has linked it to reconstruction accuracy. See
also Treves, Barnes, and Rolls (1996) for related discussion.as the fuzzy horizontal dark bands Ç8 Hz in the Fourier

power spectra of channel 2 of the local field potentials) . A key property of Fisher information is that its inverse is
a lower bound, called the Cramér-Rao bound, on the varianceBecause of the correlated factors listed above, reconstruc-

tion tended to be more accurate during the theta rhythm of all unbiased estimators (Cramér 1946; Kay 1993; Rao
1965; Scharf 1991; Zacks 1971). This directly yields anwhen the animal was running (Gerrard et al. 1995). This is

consistent with the report that place cell firing represented estimate of the minimal reconstruction error that can possibly
be achieved.an animal’s position somewhat more faithfully during the

theta rhythm (Kubie et al. 1984).
Another related factor is the sharp waves, which are be- Minimal error under Gaussian tuning in 2-D space

lieved to originate in the CA3 region perhaps because of the
To estimate Fisher information in place cell data, severallateral connectivity in this region (Buzsáki 1986, 1989).

properties of the place fields must be provided: the averageSharp waves are more frequent during immobility. It is possi-
shapes of place fields, the spiking statistics of the cells, theble that the activity during sharp waves might be involved
density of the place fields per unit area, and the statistics ofwith other functions such as memory consolidation and reac-
the tuning parameters. Instead of using noisy real data fortivation of learned correlations rather than merely reflect the
direct numerical evaluation, we use analytical models basedcurrent spatial position of the animal. Reconstruction based
on simplifying assumptions. Although these assumptions areon sharp wave activity may yield an incorrect position. How-
not rigorously true, they are reasonably good approximationsever, because the jumps did not always coincide with the
that allow useful analytical estimates to be derived. First,occurrence of sharp waves, we can only conclude that sharp
assume that the spatial tuning function is a 2-D Gaussianwaves are one possible contributing factor for discontinuity

in reconstructed path.
f (x) Å fmax expS0 \x 0 x0\

2

2s 2 D (52)A further consideration concerns the hippocampal view
cells found in monkey (Ono et al. 1993; Rolls et al. 1995).

where fmax is the maximal firing rate of a cell and s is theOne cannot completely rule out the possibility that the activ-
tuning width. The second assumption is that spiking statisticsity of some cells in rat hippocampus might be similarly
are Poisson and different cells fire spike trains that are statis-modulated by the animal’s view rather than by the current
tically independent. The third assumption is that in the spa-position alone. If this is true, the reconstructed position may
tial region of interest there are an adequate number of placejump when a rat looks around or shifts attention.
cells, and their centers are distributed uniformly (Muller etIn summary, most erratic error jumps occurred while the
al. 1987; Wilson and McNaughton 1993). Because the tun-animal was not running. Many of these jumps can be ac-
ing width s and the peak firing rate fmax vary from cell tocounted for by a momentary drop of instantaneous firing
cell, our final assumption is that the distributions of therates of recorded cells because fewer spikes imply less infor-
two parameters are statistically independent of each othermation for reconstruction. Some other jumps might reflect
(Muller et al. 1987).real biological activity in the hippocampus when the animal

Here we only state the final results of the detailed deriva-stopped running to eat, look around, and plan the next move.
tion provided in APPENDIX B. The simplest result is that
reconstruction error cannot be smaller thanR E C O N S T R U C T I O N A C C U R A C Y : T H E O R E T I C A L

L I M I T S A N D B I O L O G I C A L I M P L I C A T I O N S
Minimal Error É F2

√
2 »s 2

…

Nspikes

(53)
Fisher information

The accuracy of different reconstruction methods varied where F2 Å
√
p /2 is a constant correction factor, »s 2

… is the
average of the square of the tuning width for different placegreatly. What is the maximum accuracy that can possibly
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fields, and Nspikes is total number of spikes collected from all
the cells within the time window, namely,

Nspikes Å tN fmean (54)

Here N is the total number of cells recorded, fmean is their
mean firing rate, and t is the length of the time window.
The mean firing rate is related to the parameters of the
Gaussian place fields by the formula

fmean Å
2p
A
» fmax … »s

2
… (55)

where A is the area of interest, in which the N place fields
are uniformly distributed, and » fmax … is the average peak
firing rate of all place cells. Here the assumption of the
independence of peak firing rate and the tuning width has
been used.

Another equivalent error formula is

Minimal Error É F2

√
A

ptN » fmax …
(56)

The equivalence of the two Eqs. 56 and 53 follows immedi-
ately from Eqs. 54 and 55.

Equations 53 and 56 are expected to be more reliable
when a larger number of cells is used. This is because when
the sample size is too small, a reconstruction method may
suffer from systematic bias; that is, for a given true position,
the average reconstructed position in repetitive trials does

FIG. 10. A : distribution of centers of Gaussian tuning functions in 1-,not approach the true position. In addition, in our derivation
2-, and 3-D spaces. Only regular grids are shown here. In actual simulation,

of the error formulas, the procedure of replacing a sum by centers were scattered randomly with a uniform distribution. Average
an integral makes sense only when a large number of cells length, area, and volume per cell are given by l, l 2 , and l 3 for 1-, 2-, and

3-D cases, respectively. B : minimal achievable reconstruction error couldis used (APPENDIX B).
increase, decrease or stay same as width of Gaussian tuning function in-Unbiased reconstruction is assumed implicitly when the
creases, depending on dimension of space. Theoretical curves (Eq. 58) areCramér-Rao bound for variance is used to estimate the mini- compared with numerical simulation (symbols) of Bayesian reconstruction

mal reconstruction error. Otherwise, it would be trivial for assuming model cells with Poisson spike statistics and identical Gaussian
a reconstruction method to achieve zero variance simply by tuning function. Each data point is average of 104, 103 , and 102 repetitive

trials for 1-, 2- and 3-D cases, respectively. Without loss of generality, wegiving a constant output regardless of the input. Because
set l Å 1 in all simulation. Time window t Å 1 s and peak firing ratewe used no more than 30 place cells in the reconstruction,
fmax Å 10 Hz.

systematic bias did exist for all reconstruction methods. This
factor may reduce the accuracy of the error formulas (cf.

where » … means average over all the cells. The counterpartFig. 12).
of Eq. 56 isIn deriving these formulas, we have assumed implicitly

that the duration of the time window is small compared with
Minimal Error É CD√

ht» fmax … »s
D02
…

(58)the running speed so that the rat does not move too far
during that period of time. So if the time window is too
large compared the running speed, the formulas are no longer where constant coefficient
reliable.

CD Å (2p)0D /4
√

DFD (59)

Minimal error under Gaussian tuning in arbitrary depends only on the dimension D. Here, as before, FD is the
dimensional space correction factor for dimension D (see Table B1 and Eq.

B26) ; s is the width and fmax is the peak firing rate for theTo generalize the results in the preceding section, we can
Gaussian tuning function (52) in D-dimensional space; andderive error formulas for an arbitrary spatial dimension D by
Nspikes is the total number of spikes collected from N cellsassuming Gaussian tuning function, Poisson spike statistics,
within the time window tuniform distribution of the center of the Gaussians in space,

and statistical independence of the firing of different cells Nspikes Å tN fmean (60)
as well as their peak rate fmax and tuning width s. As the
counterpart of Eq. 53, the minimal reconstruction error based The mean firing rate fmean averaged over all cells is related
on Fisher information is to the tuning parameters by

fmean Å (2p)D /2 h

N
» fmax … »s

D
… (61)Minimal Error É FD

√
D »sD

… / »sD02
…

Nspikes

(57)
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Minimal error under cosine tuning and comparison with
population vector

Cosine tuning is widely used to model motor cortical cells
(Georgopoulos et al. 1988). We will show that under cosine
tuning, the Bayesian method can achieve the best possible
accuracy by reaching the theoretical lower bound, whereas
the performance of the population vector is well above the
bound.

However, the population vector can be more accurate than
the Bayesian method in special situations. An example is
given in Fig. 11, where two cells had orthogonal preferred
directions, perfect cosine tuning, and Poisson spike statistics.
The population vector outperformed the Bayesian method
in a small region where the test direction was the furthest
away from the two preferred directions.

Consider the 1-D situation that corresponds to a 2-D work
space for reaching. We have N idealized cells with identical

FIG. 11. Mean angular errors for different test directions in a simple
system with only 2 fixed orthogonal basis vectors, indicated by arrows in
polar plots. A perfect cosine tuning curve and Poisson spike statistics were
assumed. Each data point is an average over 5 1 104 repetitive trials. In
this example, population vector was more accurate than Bayesian method
when test direction was close to 2257, but its average error across all
directions (26.477) was still larger than that of Bayesian method (25.437) .
Parameters: fmax Å 10 Hz, fmin Å 1 Hz, and time window t Å 1 s.

The equivalence of Eqs. 57 and 58 follows from Eqs. 60
and 61. The new parameter h is the cell density. For example,
suppose N cells are distributed randomly within a D-dimen-
sional cube with edge length L, we have

h å 1
lD
Å N

LD
(62)

In the 1-D case, h Å N /L is the number of cells per unit
length; in the 2-D case, h Å N /L 2 is the number of cells per
unit area; and in the 3-D case, h Å N /L 3 is the number of
cells per unit volume. Parameter l is a characteristic length
so that lD is the average length, area, or volume per cell
when D Å 1, 2, or 3, respectively (Fig. 10A) . When D Å
2; the new Eqs. 57 and 58 reduce to the old Eqs. 53 and 56
for place fields.

The minimal reconstruction error can be reached by the
Bayesian method (cf. APPENDIX C). In Fig. 10, the theoretical
curves are compared with the simulation results of Bayesian
reconstruction, assuming model cells with Poisson spike sta-
tistics and Gaussian tuning functions with randomly distrib-
uted centers but identical tuning width and peak firing rate.
Here the error of the Bayesian method practically has

FIG. 12. Comparison of errors of population vector and Bayesian meth-reached the theoretical lower bound as long as the tuning
ods for 2-D reaching problem assuming cosine tuning, Poisson spike statis-width s was not too small compared with the characteristic tics, and a uniform probability distribution of preferred directions around

length l Å 1. In this example, it follows from Eq. 58 that a circle. Simulation results (symbols) agreed with theoretical results (curves
and straight lines in log-log plot, given by Eqs. 66 and 68) when number
of cells N was large so that errors of both methods dropped inverselyMinimal Error } s 10D /2 (63)
proportional to

√
N . In particular, Cramér-Rao lower bound (lower theoreti-

cal curve or line) was reached asymptotically by Bayesian method whenIn other words, as the tuning width s increases, the error
there were more than 20 cells. Parameters: fmax Å 10 Hz, fmin Å 1 Hz and

increases with
√
s in the 1-D case, keeps constant in the each data point is average of 104 trials with randomly chosen preferred

directions.2-D case, and decreases with 1/
√
s in the 3-D case.
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cosine tuning curves so that the mean firing rate of cell i is two-step method using all the cells was larger than the theo-
retical limit in Eq. 53 by a factor of about 2. To computedescribed by
the theoretical lower bound, the width of the place fieldsfi (u) Å A cos (u 0 fi ) / B (64)
was estimated using the first half of data by the method

where u is the angle for the test direction and fi is the described in APPENDIX B. For animal 1, the average width
preferred direction, which is drawn randomly from a uniform of place fields was »s… Å 10.1 cm and

√
»s 2
… Å 11.2 cm.

distribution around the circle, and For animal 2, »s… Å 8.6 cm and
√
»s 2
… Å 9.6 cm. The mean

firing rates of the 25 cells from animal 1 was fmean Å 0.92A Å fmax 0 fmin

2
, B Å fmax / fmin

2
(65)

Hz; and the average of the 30 cells from animal 2 was
fmean Å 1.09 Hz.are constants. Suppose the spikes have Poisson statistics and

Because the Bayesian two-step method uses informationdifferent cells are independent. The average reconstruction
from two time steps, is it fair to compare its performanceerror eBayes for the Bayesian method Eq. 36 is expected to
with the Fisher information limit evaluated with the timeapproach the minimal achievable error defined by Fisher
window of a single time step? This still may be a reasonableinformation and Cramér-Rao bound, provided that a large
comparison because the information from the previous timenumber of cells is used (APPENDIX C). The minimal angular
step is very crude: in actual reconstruction the width oferror (arc) derived by Fisher information is
the Gaussian prior distribution varied from 20 to 60 cm.
It improved reconstruction accuracy mainly by prohibitingeBayes É F1

√
J01

1

N
(66)

erratic jumps caused by low firing rates rather than by pro-
viding precise location information. For example, it can bewhere F1 is the 1-D correction factor (Table B1), N is the
seen in Fig. 3 that the Bayesian one-step method, whiletotal number of cells, and
suffering from the erratic jumps, already provides accurate
information about the fine details of the movement trajec-J1 Å tS fmax / fmin

2
0

√
fmax fminD (67)

tory. In animal 2, the average firing rate for which was
higher, the continuity constraint from the preceding timeis the average Fisher information for a single cell over a
step actually did not contribute much to the accuracytime window t. Simulation confirmed that this lower bound
(Fig. 5) .was indeed reached by the Bayesian method when the total

In idealized situations, the performance of the Bayesiannumber of cells was large enough (Fig. 12).
method should reach the Cramér-Rao lower bound (Figs. 10In the same situation, the average angular error of the
and 12 and APPENDIX C). For real place cell data, the basicpopulation vector method also can be estimated directly (AP-
assumptions of Poisson spike statistics and independence forPENDIX D). The result is
the Bayesian formulas are not exactly true, which implies

evector É F1

√
Q1

N
(68) suboptimal performance. Reconstruction bias caused by the

relatively small number of cells is another source of error
where (cf. Fig. 12). Finally, the estimate of Cramér-Rao bound

itself relies on some simplifying assumptions such as
Q1 Å

1
2
/ 2B

tA 2
(69) Gaussian tuning, which may lead to additional error.

CORRECTION FACTOR AND SPATIAL DIMENSION. The correc-with A and B given by Eq. 65 . In the 2-D case, corresponding
tion factor FD is the ratio of the mean error over the squareto 3-D work space for reaching, Eq. 68 needs to be modified
root of the mean square error. Its theoretical value dependsby replacing F1 by F2 and Q1 by
only on the dimension D of the work space, assuming
Gaussian error distribution (APPENDIX B). As a consequence,Q2 Å

6
5
/ 6B

tA 2
(70)

its empirical value could be used to estimate the dimension
D. For reconstruction errors obtained for all time steps byBecause the error for the population vector in Eq. 68 and the
the Bayesian two-step method, the empirical value waserror for the Bayesian method in Eq. 66 are both inversely
0.8705 for animal 1 and 0.8855 for animal 2, surprisinglyproportional to the square root of the number of cells (see
close to the value of the 2-D correction factor F2 Å 0.8862also footnote 1), the ratio
but quite different from F1 and F3 (Table B1). However, theevector

eBayes

É
√

J1Q1 (71) actual error distribution differed from the theoretical proba-
bility density r2(r) (Table B1 and Fig. 16) because it peaked

is independent of the number of cells. It can be verified at a smaller value than the standard deviation (r Å s) and
analytically that J1Q1 õ 1 regardless of the values of fmin , had a longer tail for large errors. This might be related to
fmax , and the time window t. This means that here the Bayes- the fact that the rats run in 2-D space but within the con-
ian method is always more accurate than the population finement of a track so that the work space was neither purely
vector regardless of the choice of parameters. two dimensional nor purely one dimensional.

COUNTERINTUITIVE EFFECT OF PLACE FIELD SIZE. ImaginePlace cell reconstruction error compared with theoretical
we have a fixed number of place cells all having place fieldslimits
within a given region. Suppose we can change the size of
the place fields without altering the positions of the placeCOMPARISON WITH LOWER BOUND. As shown in Table 1

and Fig. 5, our best reconstruction error by the Bayesian field centers and the peak firing rates. How would this change
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affect the accuracy of spatial information encoded in the of neurons, regardless of the decoding method used. As a
consequence, the theoretical limit is valid not only for thepopulation? The same question in a different form is how

the minimal achievable reconstruction error depends on the computational problem of reconstruction but also for all neu-
rophysiological and behavioral measures of acuity or accu-place field size. This question is related to how the accuracy

of spatial representation is affected by the broader place racy in the sense of mean square error, as long as the infor-
mation is derived solely from the same neuronal population.fields found in ventral hippocampus of rats (Jung et al. 1994)

and in the hippocampus of the genetically engineered mouse We have derived explicit formulas for cells with Gaussian
and cosine tuning functions because of their common usage,(see further) . The size of place fields also tends to increase

during repetitive running on a track (Mehta and McNaugh- although the methods can be adapted readily for more gen-
eral situations. From these formulas, we know precisely howton 1997).

When the peak firing rate is fixed, changing the size of the reconstruction accuracy depends on the parameters of
individual cells and the cell number density. For example,place fields should have no effect on the minimal reconstruc-

tion error or the accuracy of spatial representation. This is suppose we have spatial region of 1 1 1 m. How many place
cells must be used to achieve a spatial acuity of d Å 1 cmbecause Eq. 56 does not contain the width s of the place

fields. Here we have assumed that the place fields are of everywhere in this region? Using Eq. 56, we have
Gaussian shape, the spikes are Poisson, and different cells
are independent. N Å A

4d 2 fmaxt
(72)

The explanation is that larger place fields imply more
overlaps and therefore higher overall average firing rate of Assuming a mean peak firing rate fmaxÇ 15 Hz and a biologi-
the whole population; this will reduce reconstruction error. cally plausible time window t Ç 200 ms, we get N Ç 103.
This effect turns out to precisely compensate for the less That is, a minimum of Ç1,000 cells would be required. As
accurate spatial information provided by a single enlarged another example, using up all the place cells in a rat, say,
place field. A confirmation by simulation is shown in Fig. N Ç 105 (Amaral and Witter 1995), what is the maximum
10. The fact that larger place field sizes imply higher mean area that can be covered under the acuity of 1 cm? Using
firing rates is clearly seen in Eq. 55. This effect precisely the same parameters considered earlier, we find the total
cancels out the effect of the tuning width s in Eq. 53 so area is A Ç 106 cm2, the same as a 10 1 10 m square.
that the width s is absent in the equivalent Eq. 56. The insensitivity of place field size on reconstruction accu-

A related issue is the recent reports of increased place racy is a peculiarity of two dimensions. As shown in Fig.
field size for CA1 cells in the hippocampus of genetically 10, more information is encoded by a sharper tuning curve
altered mice with impairment of long-term potentiation in 1-D space. Examples of 1-D tuning curves include the
(LTP) restricted to CA1 (McHugh et al. 1996; Rotenberg orientation tuning in visual cortex and directional tuning of
et al. 1996). A decease of the peak firing rate of place cells head-direction cells (Taube et al. 1990). In contrast, in
was reported explicitly by Rotenberg, Mayford, Hawkins, 3-D space or space of higher dimensions, a sharper tuning
Kandel, and Muller (1996). According to Eq. 55 such a width implies worse information encoding. So the 2-D exam-
decrease also was implied in the observation that the mean ple of place cell is a critical case where the tuning width
firing rate of the genetically altered mice were the same as does not matter. To increase representation accuracy, one
the normal (McHugh et al. 1996). The increase of recon- should use neurons with broader tuning functions to repre-
struction error for these mice (McHugh et al. 1996) may be sent a variable higher than two dimensions, assuming that
attributed to a decrease in peak firing rate rather than to an the peak firing rate is fixed. However, broader tuning width
increase in place field size per se because Eq. 56 suggests implies higher energy consumption because more neurons
that reconstruction error should be independent of place field are activated at any given time. See Hinton, McClelland, and
size. Equivalently, if the mean firing rate is fixed, it is equally Rumelhart (1986), Baldi and Heiligenberg (1988), Zohary
valid to apply Eq. 53, which suggests that in this case the (1992), Gerstner, Kempter, van Hemmen, and Wagner
error should be larger for larger place fields. Instability of (1996) for related discussions on the consequences of broad
place fields is another possible source of reconstruction error tuning.
(cf. Rotenberg et al. 1996). A more detailed analysis of the
data would be required for quantitative comparison.

The accuracy of spatial representation can be improved B I O L O G I C A L P L A U S I B I L I T Y O F R E C O N S T R U C T I O N
by increasing the number of cells or their firing rates but not M E T H O D S
by sharpening the place fields. For example, after repetitive
running on a track, both the size of the place fields and the Unified formulation
average firing rate tended to increase (Mehta and McNaugh-
ton 1997). The increased firing rate would imply better accu- The main result in this section is that all the reconstruction

methods discussed in this paper can be implemented as linearracy of spatial representation, regardless of the place field
size. feedforward neural networks. This result is in sharp contrast

with the general belief that reconstruction methods such as
the Bayesian method or the template matching method areGeneral biological discussion
merely mathematical techniques without any biological rele-
vance.The minimal achievable reconstruction considered in the

preceding sections is actually a general measure of how The reconstructed position x̂ in all reconstruction methods
considered above can be expressed asaccurately a physical variable is encoded by a population
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xP Å argmax
x

c(x) (73)

and function c(x) can be written in the form

c(x) Å ∑
N

iÅ1

nifi (x) / A(x) (74)

where as before ni is the number of spikes that cell i fired
in a certain time window, fi (x) is a basis function associated
with cell i. The function A(x) is an additive bias, which is
independent of the activity of the cells and is reminiscent
of a regularization term (Poggio et al. 1985; Tikhonov and
Arsenin 1977). See also Zemel, Dayan, and Pouget (1997)
for related discussion. The bias is needed only for imple-
menting Bayesian methods. For all basis function methods,
there is no bias term; that is, A(x) å 0. See Table 2 for a
summary.

Here the Bayesian methods are implemented by taking
FIG. 13. An example of addition and multiplication of 2 basis functions.the logarithm of the posterior probability in Eqs. 36 and 41 .

Addition yields a distribution with 2 peaks, yet multiplication yields onlyBecause logarithm is monotonic and does not change the 1 peak. Key operation of Bayesian reconstruction method is multiplication
peak position, maximizing the product P

i
fi (x) ni is equivalent and its output distribution is often sharper and less likely to contain multiple

peaks than output distribution of basis function method, whose key opera-
to maximizing the sum (

i
nifi (x) , where tion is addition. See Fig. 2 for an actual example of comparison.

sis functions is illustrated in Fig. 13, although taking loga-fi (x) Å ln fi (x) (75)
rithm can transform a product into a sum. For the direct

To avoid taking the logarithm of zero, an arbitrary small basis method, the computation is the sum
positive number may be added to the tuning function fi . The n1 f1(x) / n2 f2(x) / rrr Å ∑

i

ni fi (x) (77)
other factors in the Bayesian Eq. 36 becomes the additive
bias

In Bayesian method, the crucial part of the main Eq. 36 is
the productA(x) Å ln P(x) 0 t ∑

N

iÅ1

fi (x) (76)
f1(x) n

1 f2(x) n
2rrr Å ∏

i

fi (x) n
i (78)

which does not depend on activity ni . An intuitive interpreta-
The product is like a logical ‘‘and’’ operation and the finaltion of the bias is that it favors positions that animal visits
peaks correspond to those positions where all contributingfrequently, that is, places with high P(x) , and at the same
template functions in the product are not close to zero. Bytime disfavors places that are over-represented by a large
contrast, the sum behaves like a logical ‘‘or’’ operation andnumber of cells or cells with excessively high firing rates.
all peaks from contributing template functions are preserved.The bias term becomes a constant and can be ignored if the
This difference explains why output distributions of basisanimal is equally likely to visit all positions and the average
function methods are usually much broader and more likelyfiring rates of all cells are uniform across space.
to contain multiple peaks than that of the Bayesian methodsThe difference between addition and multiplication of ba-
(Fig. 2) .

TABLE 2. Unified formulation of reconstruction methods Biological implications

The unified formulation of reconstruction methods in theMethods Basis fi(x) Bias A(x)
preceding section can be implemented readily by a biologi-

Vector methods* xirx 0 cally plausible neural network structure. The first computa-
Direct basis† fi(x)P(x) 0 tional step in Eq. 74 is linear combination of fixed basis
Reciprocal basis† gi(x)P(x) 0 functions. Here the coefficients are the numbers of spikes,Probabilistic

which are proportional to the instantaneous firing rates(1-step) ln fi(x) ln P(x) 0 t (i fi(x)
Probabilistic within the given time window, which is plausibly a fraction

(2-step)‡ ln fi(x) ln P(x) 0 t (i fi(x) of a second. The linear combination only requires a feedfor-
0 k \x 0 xpre\

2/u(x)d

ward network in which the basis functions are implemented
by the connection weights (Fig. 14). More precisely, theA summary of reconstruction methods using Eq. 74. * Examples of vector

methods include population vector and optimal linear estimator. Here only sum (
N

iÅ1
nifi (x) is computed asa directional vector is shown. For a positional vector like 2-D position,

scaling is needed as in Eq. 32. † fi and gi are related by pseudoinverse. ‡ In
the probabilistic 2-step method (Bayesian), k ú 0 is a constant, xpre is

∑
N

iÅ1
nifi (x) Å ∑

N

iÅ1
S ni

t DWirx (79)the reconstructed position from preceding time step, u(x) is dimensionless
average speed at position x, and d is a constant (1 ° d ° 2).
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rent network may perform operations similar to winner-take-
all, noise cleaning or maximum likelihood estimation
(Pouget and Zhang 1997). This approach has some biologi-
cal plausibility because attractor dynamics might actually be
used by the brain, for example, in the hippocampal system
(McNaughton et al. 1996; Samsonovich and McNaughton
1997; Tsodyks and Sejnowski 1995a; Zhang 1996), the pri-
mary visual cortex (Ben-Yishai et al. 1995; Somers et al.
1995; Tsodyks and Sejnowski 1995b), and motor cortex

FIG. 14. A unified network implementation for various reconstruction (Lukashin et al. 1996).
methods. First layer contains N cells tuned arbitrarily to an variable x . One may ask which reconstruction algorithm is actuallyCells in 2nd layer represent value of x by their locations in layer. Activity

used by the biological system, for example, for spatial navi-distribution in 2nd layer represents how likely it is for each possible value
gation with the hippocampus place cells. There are a fewof x to be true value.
general predictable effects. According to the unified network
implementation in Eq. 74 , different methods are distin-where ni /t is the instantaneous firing rate of cell i in the

first layer, and Wirx is the weight from cell i in the first layer guished mainly by the template functions that are imple-
mented as synaptic weights. For example, the direct basisto cell x in the second layer. The weight pattern is defined

to be proportional to the template function: Wirx å tfi (x) . method would imply a weight pattern directly proportional
to the mean firing rate given by the tuning function, whereasIndeed, linear combination of basis functions is biologi-

cally plausible computational strategy that has been used by the Bayesian method would imply a weight pattern propor-
tional to the mean firing rate on a logarithm scale. Whethermany authors, such as in 3-D object representations (Poggio

and Girosi 1990; Ullman and Basri 1991), parietal spatial or not the brain uses the most efficient construction method
might also be tested by spatial acuity at neural or behavioralrepresentation (Pouget and Segnowski 1994, 1997; Zipser

and Andersen 1988), modeling place cells (O’Keefe and levels. For our dataset, such information is not available.
What we have shown here is that the biological system doesBurgess 1996; Redish and Touretzky 1996; Zipser 1985),

and/or as a general strategy for neural representation (An- have the computational resources to implement the most
efficient algorithms we considered, which can reach the bestderson and Van Essen 1994; Poggio 1990; Zemel et al.

1997). possible accuracy defined by Cramér-Rao lower-bound un-
der idealized situations.The maximization in the second computational step in Eq.

73 can be implemented by any circuits that can approximate
a winner-take-all operation on the activity distribution in the C O N C L U S I O N S
second layer after the first feedforward step. An exact win-
ner-take-all implementation might not be needed in the bio- The goal of this paper has been in part to compare different

reconstruction methods, to improve the accuracy of theselogical system because there are different ways of reading
the distributed information after the first step is done. In methods, and to assess their performance against the theoret-

ical lower bound on reconstruction accuracy for all possiblegeneral, the full activity distribution after the first feedfor-
ward step contains more information about the probability methods. For trajectory reconstruction based on spike trains

from simultaneously recorded hippocampal place cells,distribution of the position and it may be useful to maintain
this information for the purpose of further computations that probabilistic methods based on Bayesian formula were ex-

ceptionally accurate, especially when information about theneed to take into account the variance of the estimate as
well as the mean of the position (Nowlan and Sejnowski reconstructed position from the previous time step was used

to discourage discontinuities in the trajectory. In our best1995).
The bias term for the one-step Bayesian method can be reconstruction with an average of up to Ç30 spikes within

the time window, the mean errors were in the range of theimplemented simply as constant inputs to the second layer.
To implement the additional bias for the two-step Bayesian 5 cm intrinsic error of the position tracking system.

This reconstruction study has also revealed some interest-method, a type of short-term memory is needed for the win-
ner-take-all operation. The quadratic bias in Table 2 comes ing properties of place cells, such as erratic jumps of recon-

struction errors and their correlation with movement and thefrom the Gaussian distribution in Eq. 43 , but the precise
functional form is not critical. In network implementation, local field potentials, the slow systematic drift of reconstruc-

tion error, as well as a possible shift of the optimal centerany facilitation mechanism that favors units close to the
previously selected winner unit and prohibits units far away of the reconstruction time window towards the past during

continuous periodic running.should suffice.
Therefore, it is feasible for a biological system to imple- There are two major implications for our consideration

of the theoretical lower bound on reconstruction accuracyment all the reconstruction methods considered in this paper.
Moreover, a simple Hebb rule should be enough for learning derived by Fisher information and Cramér-Rao inequality.

First, this lower bound determines precisely how accuratelythe weights used in the Bayesian method and the direct basis
method because the desired template function for each cell a physical variable is encoded in the neuronal population in

the sense of mean square error, regardless of which methoddepends only the tuning function of the same cell. However,
the reciprocal basis method may need a nonlocal learning is used for reading out the information. That is, this bound

quantifies the amount of information encoded in the neuronalrule.
A related observation is that attractor dynamics in a recur- population regardless of decoding method. As a conse-
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numbers of spikes fired by these cells within the time window tquence, the best achievable accuracy is valid not only for
and (g1 , . . . , gN) are the basic functions to be determined. Herethe reconstruction problem, but also for all possible neural
t is included in the formula for the convenience of scaling; it doesor behavioral measures of acuity or accuracy, as long as the
not change the result. The discrete version of the basis functioninformation is derived solely from the neuronal population
gi (x) is the column vector gi , which is defined by first digitizingin question. Second, we have identified that the Bayesian the position x and then concatenating the pixels. The vectors are

reconstruction methods can reach the theoretical lower collected into a single matrix G Å [g1 , . . . , gN] . As shown in Eq.
bound when the conditions of Poisson spike statistics and 15 , the simple reciprocal basis is related to the firing rate matrix
independence of different cells are satisfied. In such situa- F by
tions, optimal reconstruction has been achieved. For our

G Å F†T Å F(FTF)01 (A2)place cell dataset, the best reconstruction errors were above
the estimated theoretical limit by perhaps a factor of two or where the second equality is valid only when the matrix inverse

is nonsingular.so. The remaining discrepancy may be caused by various
The reciprocal basis functions obtained by Eq. A2 are appropriateapproximations involved.

only if the animal visits each spatial position equally frequently.One counterintuitive result emerging from our theoretical
When the visiting probability is nonuniform, there are several waysconsideration of accuracy is that making the size of all place
to modify the matrix G or the basis functions. First the simple Eq.fields smaller (or larger) without changing their peak firing
21 is the same as the prescriptionrate would have no effect on the accuracy of coding the

G Å PF†T Å PF(FTF)01 (A3)animal’s position in the whole population. However for
1-D work space, a narrower tuning curve gives more accurate This is the formula used in our systematic comparison of different
coding. By contrast, for three and higher dimensions, a reconstruction methods in Fig. 5. Alternatively, we may choose
broader tuning function gives more accurate coding. Thus

G Å
√
P (

√
PF) †T Å PF(FTPF)01 (A4)two dimensions are a critical case in which the coding accu-

racy is independent of the width of the tuning function. A third possible formulation is
Despite popular belief to the contrary, we have shown that

all reconstruction methods considered in this paper including G Å PF(FTPF / 1
t

D)01 (A5)
template matching and the Bayesian method can be imple-
mented as simple feedforward neural networks. This result Here three diagonal matrices have been used, which are defined

assuggests that biological systems are capable of implementing
all of these reconstruction methods. The reduction of the
nonlinear Bayesian method to the linear basis function

P Å

P1

P2
???

PK

(A6)framework relies on the assumptions of Poisson spiking sta-
tistics and independence of different cells. For the place cell
data, they are reasonable approximations, although they are
not exactly true. √

P Å

√
P1 √

P2
??? √

PK

(A7)Whenever neuronal activity is correlated with a measur-
able physical variable, reconstruction of this variable from
population activity is a relevant problem both as a research

andtool and as a hint to how the brain might solve the same
problem. There are no intrinsic constraints on the type of
physical variables that can be reconstructed, or on the type D Å

fU 1

fU 2
???

fU N

(A8)
of tuning functions that the cells can encode. For example,
instead of the position in a continuous 2-D space, the variable

where K is the total number of position pixels, Pk is the probabilitycould as well be discrete and disjoint, which might be more
for visiting position k , and fV i is the average firing rate of cell i .suitable for representing distinct classes of objects or catego-

These formulas are related. In Eq. A5 , the D term is related tories.
firing rate variability (see below). For large time window t, the
D term vanishes, and Eq. A5 is reduced to Eq. A4 . When the

A P P E N D I X A : R E C I P R O C A L B A S I S W I T H visiting probability Pk is the same for all positions, Eq. A4 is
M O D I F I C A T I O N S reduced to the original reciprocal basis Eq. A2 .

Equation A5 has been derived by minimizing the error functionIn this section we modify the reciprocal basis by taking into
account a nonuniform probability distribution for visiting different

E Å ∑
k ,n

ZZIk 0 G S1
t

nDZZ2

PkPnÉk (A9)
positions as well as the randomness in firing rate. As with the
original reciprocal basis, the modified basis functions are optimal

where PnÉk is the probability for the spike vector n to occur atwith respect to mean square error. However the reciprocal relation-
position k and the position k is represented by the vector Ik , theship is lost. For our dataset, the performances of these modified
k th column of the K 1 K identity matrix. Assuming Poisson spikemethods were sometimes better than the original reciprocal basis,
statistics, we can expand Eq. A9 and evaluate each term by usingas shown in Table 1.

In general, consider a basis function method
»ninj… Å H »ni …

2 / »ni … , i Å j

»ni … »nj… , i x j
(A10)

xP basis Å argmax
x

∑
N

iÅ1

ni

t
gi (x) (A1)

where » … means average over spikes, after setting derivative of
the error function with respect to matrix G to zero. Thus we obtainwhere N is the total number of cells, n Å (n1 , . . . , nN) are the
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Eq. A5 . The diagonal matrix D appears here because the self- Fisher information (Cover and Thomas 1991; Kay 1993; Rao 1965;
Scharf 1991; Seung and Sompolinsky 1993; Zacks 1971):correlation »n 2

i … Å »ni …
2 / »ni … contains the additional term »ni …

because of firing rate variability [cf. Salinas and Abbott (1994)] .
When firing rate variability is ignored, the equation J(x) Å KZ ÌÌx

ln P(nÉx)Z2L Å tf *(x) 2

f ( x)
(B4)

1
t

n Å FTIk (A11)
where the last equality follows from straightforward calculation
under the assumption that the probability P(nÉx) of firing n spikesholds exactly. This is a reasonable approximation when the firing
at position x has Poisson distribution with the mean firing raterates are high or the time window is large. Dropping out the term
tf ( x) .PnÉk in Eq. A9 , we only need to minimize

The squared error for any unbiased estimator of position x cannot
exceed the Cramér-Rao bound, namelyE Å ∑

K

kÅ1

\Ik 0 GFTIk\
2Pk Å \(I 0 GFTI)

√
P\ 2 (A12)

»Dx 2
… ¢ 1

J(x)
(B5)The result is Eq. A4 .

whose validity originates from the universal Cauchy-Schwartz in-A P P E N D I X B : M I N I M A L R E C O N S T R U C T I O N E R R O R
equality. This result agrees with the intuitive Eq. B3 .

B A S E D O N F I S H E R I N F O R M A T I O N
When more than one cell is used in reconstruction, as long as

they are independent, the total Fisher information is the sumBasic approach

We provide an intuitive argument for using Fisher information
J(x) Å ∑

N

iÅ1

Ji (x) (B6)and then sketch our method for estimating a lower bound for recon-
struction error using the Cramér-Rao inequality.

This leads to an effective composition rule of minimal errors:As an intuitive example, consider a 1-D situation with an ideal-
ized place cell whose firing rate f ( x) depends only on position x
(Fig. B1). Suppose the cell fired n spikes within the time window 1

e 2
Å ∑

N

iÅ1

1
e 2

i

(B7)
t. Because of random variation in the exact number of spikes, the
formula

where e 2 is the minimum achievable value of »Dx 2
… by using all

n /t Å f ( x) (B1) the cells from 1 to N , and e 2
i is defined as the same error using

only cell i .is true only on average but not for each individual trial, When we
So far, we have only considered a 1-D problem. Extension touse this single cell to estimate the position x from the actual firing

2-D estimates is simple if we assume that the error statistics in xrate n /t and the shape of the tuning curve f ( x) , the fluctuation of
and y directions are the same. Then the squared error of reconstruc-the number of spikes would result in an error Dx that obeys
tion is

Dn /t É f *(x)Dx (B2)
»Dx 2

… / »Dy 2
… Å 2 »Dx 2

… ° 2
J

(B8)
Thus the mean squared error is

where J is the Fisher information for variable x alone. The minimal»Dx 2
… É »Dn 2

…

t 2 f *(x) 2
Å f ( x)

tf *(x) 2
(B3)

reconstruction error is estimated as F2

√
2/J . The final result is given

by Eq. 56 or Eq. 53 .In the last step, Poisson spiking statistics was assumed; that is,
the variance »Dn 2

… is equal to the mean »n … Å tf ( x) . Here the
reconstruction error is expressed in terms of the tuning function Derivation of error formula in arbitrary dimensions
f ( x) and its slope f *(x) . It makes sense that a larger slope implies

Following the same approach considered in the preceding sec-smaller error because a small change of position would imply a
tion, we list the keys steps in deriving the general formula forlarge and noticeable change in the firing rate (Fig. B1).
minimal reconstruction error in arbitrary spatial dimension D . TheAn identical result is obtained by using the formal definition of
mean firing rate of each cell is assumed to obey a Gaussian tuning
function in a D-dimensional space

f (x) Å fmax expS0 \x 0 c \ 2

2s 2 D (B9)

where x Å (x1 , . . . , xD) and \x\ 2 Å x 2
1 / rrr / x 2

D and c is the
center of the Gaussian. The centers for different cells are assumed
to be uniformly distributed in space. The peak firing rate fmax and
the tuning width s may differ from cell to cell. For each cell, at
position x , the probability for obtaining n spikes within a time
window t is assumed to obey a Poisson distribution

P(nÉx) Å (tf (x)) n

n!
exp[0tf (x)] (B10)

The Fisher information with respect to a single dimension, x1 for
example, is

FIG. B1. Intuitive argument for Fisher information in estimating posi-
tion x from instantaneous firing rate and a known tuning curve f ( x) . Fluctu-

J [1] (x) Å KZ ÌÌx1

ln P(nÉx)Z2L Å t

f (x) S Ì f (x)
Ìx1

D2

Å tx 2
1

s 4
f (x) (B11)ation in firing rate leads to an error Dx in estimated position, which de-

creases with slope of tuning curve.
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where the first equality is a definition, the second equality follows ered by Skaggs et al. 1996. One difference is that here the probabil-
ity for spatial occupancy should not be included.from the Poisson statistics Eq. B10 and the last equality follows

from the Gaussian tuning Eq. B9 . The third method exploits the linear relationship between the
area A of a place field above a given cutoff firing rate fcutoff andFirst consider the simple case where all cells have identical peak

firing rate and tuning width. Now the total Fisher information with the logarithm of fcutoff (Muller et al. 1987). This linearity is consis-
tent with the Gaussian model in Eq. B17 , which givesrespect to x1 for all N cells should be

A Å 4ps 2( ln fmax 0 ln fcutoff ) (B20)
J [1]

N Å ∑
N

iÅ1

J [1] (x 0 ci ) É h *rrr*
D times

J[1] (x)dx1rrrdxD (B12)
Because A depends linearly on ln fcutoff , both s and fmax can be
obtained by linear regression.

In our dataset, the movement of the animal was restricted on awhere ci is the center of the Gaussian tuning function for cell i , narrow track. Simply assuming that each observed place field is aand h is the number of cells per unit volume in D-dimensional circular symmetric 2-D Gaussian cut by the track, we can estimatespace (see Eq. 62) . The sum is replaced by the integral under the the width s of the uncut Gaussian by a modified variance method.assumption that the number of cells N is large and the centers c1 , First, concatenate the pixels in the 2-D distribution f ( i , j) to obtain. . . , cN are uniformly distributed in space. Because of the symmetry a 1-D distribution f ( i) and then assume a 1-D Gaussian distributionwith respect to different dimensions, we can use the same argument to obtain the 1-D tuning widthin Eq. B8 to obtain the Fisher information for all N cells with all
dimensions included

s1 Å
1

2
√
p

» f … 2

» f 2
…

(B21)
JN Å D01J [1]

N Å (2p)D /2D01htfmaxs
D02 (B13)

Here » f … Å h(
i

f ( i) and so on, with h being the interval in theIf different cells have different peak firing rate fmax and tuning
width s, one can easily see that Eq. B13 should be modified to 1-D grid. The 2-D tuning width s should equal approximately s1

divided by the number of grid points spanned by the width of theJN Å (2p)D /2D01ht» fmaxs
D02
… (B14)

track. This is because when a 2-D Gaussian is cut by an arbitrary
where the average » … is with respect to the population of cells straight line, the resultant 1-D distribution is a Gaussian of the
with different peak firing rate and tuning width. Assuming indepen- same tuning width. The above procedure is valid if different 1-D
dence of the tuning parameters, we have slices cut in parallel with the track have approximately the same

peak rate.
» fmaxs

D02
… Å » fmax … »s

D02
… (B15)

Finally Distribution of reconstruction error and correction factor
Minimal Error É FD /

√
JN (B16) A correction factor is needed because the Cramér-Rao bound

only gives an estimate of the variance of unbiased reconstruction,where the correction factor FD is given by Eq. B26 . The result is
that is, the average square of the reconstruction error »r 2

… . ItsEq. 58 . In addition, it is easy to derive Eq. 61 , which immediately
square root

√
»r 2
… differs slightly from the direct average of recon-leads to the equivalent Eq. 57 .

struction error »r … . The task of this section is to determine the
ratio FD Å »r … /

√
»r 2
… analytically.Estimating tuning width

For reconstruction in D-dimensional space, it is natural to as-
sume that the distribution of the error vector obeys a D-dimensionalTo evaluate the Fisher information, the width s in the Gaussian

tuning model needs to be estimated. Given the spatial distribution Gaussian distribution
of the average firing rate f ( x , y) measured experimentally for a
single cell, we want to estimate the tuning width s assuming a * (

√
2ps)0D expS0 r 2

2s 2DdV Å *
`

0

rD(r)dr Å 1 (B22)
Gaussian model

where r Å
√

x 2
1 / rrr / x 2

D is the error of reconstruction in D-
f ( x , y) Å fmax expS0 (x 0 x0) 2 / (y 0 y0) 2

2s 2 D (B17)

There are several methods for estimating s. The first method
uses entropy or Shannon information TABLE B1. Correlation factor for estimating minimal

reconstruction error
s 2 Å 0 1

2p K f

fmax

ln
f

fmax
L (B18)

Spatial
Dimension D Correction Factor FD Error Probability Density rD(r)

This method requires an estimate of the peak rate fmax , which is
F1 Å

√
2
p
É 0.7979 r1(r) Å

√
2
p

1
s

expS0 r2

2s2Dsensitive to noise and smoothing. D Å 1
The second method uses the variance

(half Gaussian)
s 2 Å 1

4p
» f … 2

» f 2
…

(B19)

F2 Å
√
p

2
É 0.8862D Å 2 r2(r) Å r

s2
expS0 r2

2s2D (Rayleigh)
In the above, all averages » … should be interpreted as follows.
Suppose each unit square in the grid has the area h 2 and f ( i , j) is

F3 Å
√

8
3p
É 0.9213 r3(r) Å

√
2
p

r2

s3
expS0 r2

2s2Dthe value of average firing rate at grid point ( i , j) , then » f … Å D Å 3
h 2(

i , j
f ( i , j) and so on. Equations B18 and B19 are closely related

(Maxwell)to the information content measure and sparsity measure consid-
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error defined by Fisher information and the Cramér-Rao bound,
provided that the conditions of Poisson spike statistics and indepen-
dence of different cells are satisfied. In such a situation, the opti-
mality of Bayesian reconstruction method can be verified directly
as follows. This analysis can provide an explicit estimate of the
reconstruction error in each individual trial. In general, for a uni-
form prior probability distribution, Bayesian reconstrution is equiv-
alent to maximum likelihood estimation, which can reach the
Cramér-Rao bound in the limit of large sample (Cramér 1946).

Consider the Fisher information for a 1-D reconstruction under
a uniform prior probability:

J Å t ∑
i

f *i (x) 2

fi (x)
(C1)

where fi(x) is the tuning curve for cell i and t is the time window
(see APPENDIX B). Let Dx be the reconstruction error of the Baye-
sian method, which seeks the position x that maximizes

FIG. B2. Distributions of reconstruction errors in 1-, 2-, and 3-D spaces.
L Å ∑

i
F ni

t
ln fi (x) 0 fi (x)G (C2)Continuous curves are theoretical distributions in Table B1, which agree

nicely with histograms obtained by simulations of Bayesian reconstructions
repeated for 5,000–10,000 trials, assuming Gaussian tuning function and or satisfies
Poisson spike statistics. Tuning width was s Å 3. All other parameters
were identical to those in Fig. 10. ÌL

Ìx
Å ∑

i
S ni

t

f *i (x)
fi (x)

0 f *i (x)D Å 0 (C3)

dimensional space, with xi being the error in the i th dimension.
Cramér-Rao inequality requires that the average square errorHere
»Dx 2

… ¢ 1/J . Here we want to show that
dV Å dx1rrrdxD Å F 2pD /2

G(D /2) GrD01dr (B23)
»Dx 2

… É 1/J (C4)

when a large number of cells is used. That is, when the Cramér-is the volume element in the D-dimensional space and the factor
Rao lower bound is achieved.in the brackets is the surface area of the (D 0 1)-dimensional unit

Consider how fluctuation in the instantaneous firing rate ni /tsphere, and G is Euler’s gamma function.
affects the estimated x because without the fluctuation the recon-The probability density rD(r) for reconstruction error can thus
struction would always be perfect. By definition, the average ofbe obtained from Eqs. B22 and B23 :
ni /t is fi (x) . Calling the difference ei , we write

rD(r) Å rD01

2D /201G(D /2)sD
expS0 r 2

2s 2D (B24)
ni /t Å fi (x) / ei (C5)

Replace x by x / Dx in Eq. C3 and then make Taylor expansion,from which it is possible to compute the moment
keeping only the first-order term of Dx . After straight forward

»rm
… Å *

`

0

rmrD(r)dr Å 2m /2 G[(D / m) /2]
G(D /2)

sm (B25) algebra we find

For example, when m Å 2 the formula has a particularly simple Dx É t

J
∑

i
ei

f *i (x)
fi (x)

(C6)
form »r 2

… Å Ds 2, and (r/s)2 obeys the chi square distribution with
D degrees of freedom.

This shows how the estimated position depends on the firing rate
The correction factor, defined as »r … /

√
»r 2
… , is thus fluctuation in an individual trial. The above approximation proce-

dure is valid if a large number of cells is used so that the error is
FD å

»r …√
»r 2
…
Å

√
2
D

G[(D / 1)/2]
G(D /2)

(B26) small. Because by definition »ei … Å 0, it follows from Eq. C6 that
the estimated position must be unbiased, i.e., »Dx … Å 0. Squaring

Note that FD depends only on the spatial dimension Eq. C6 and averaging yield
D . The width parameter s for the error distribution has disappeared.
Although FD õ 1 for all dimension D , it approaches 1 monotoni-

»Dx 2
… É t 2

J 2 ∑
i
»e 2

i …
f *i (x) 2

fi (x) 2
(C7)

cally as D r ` .
The results for 1-, 2-, and 3-D spaces are listed in Table B1.

where all cross terms »eiej… with i x j have vanished because ofThe theoretical curves can accurately describe the empirical error
the independence of different cells. By using the definition Eq. C1distribution of Bayesian reconstruction on synthetic data (Fig. B2).
and Poisson spike statistics »e 2

i … Å fi (x) /t, we obtain Eq. C4 fromThis result is consistent with the assumption of Gaussian error
Eq. C7 as desired.distribution in the original D-dimensional space. In fact, for a

locally uniform prior probability distribution, Bayesian reconstruc-
tion method is equivalent to maximum likelihood estimation, the
error distribution of which is known to be asymptotically Gaussian A P P E N D I X D : E R R O R O F P O P U L A T I O N V E C T O R
in the limit of large sample (Cramér 1946). U N D E R C O S I N E T U N I N G

2-D work spaceA P P E N D I X C : O P T I M A L I T Y O F B A Y E S I A N

R E C O N S T R U C T I O N Consider N cells with cosine tuning functions and preferred
rections scattered randomly around the circle with a uniform distri-As shown in Figs. 10 and 12, Bayesian reconstruction in Eq. 36

can achieve the best possible accuracy in the sense of mean square bution. Let the spikes of different cells occur independently of
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each other and obey a Poisson distribution. The task is to estimate which follows from Poisson spike statistics and the independence
of different cells. Next, substitute »ni …T Å tfi Å t(Auix / B) intothe average angular error of the population vector.

Note that by average over trials, denoted by » …T , we mean that the expansion and note that all terms containing odd powers such
the preferred directions of all cells are fixed and the average is as uixu 2

iy and uixujxuiyujy will vanish after averaging over configura-
performed over repetitive trials where the only randomness is the tions. Thus we need only keep terms with even powers and obtain
Poisson statistics of the spikes; by average over configurations,
denoted by » …C, we mean averaging over random choices of the

»U 2
y …T É tB ∑

N

iÅ1

u 2
iy / t 2A 2 ∑

N

iÅ1

u 2
ix u 2

iypreferred directions. The error of population vector comes from
both the randomness of the spikes and the randomness of the

É tBN »u 2
iy …C / t 2A 2N »u 2

ix u 2
iy …C (D10)preferred directions.

Because of the rotation symmetry, we need to consider only a
which can be evaluated by applying Eq. D6 again. The final resultsingle test direction along the x-axis, u Å (1, 0) . The average
of the average angular error is F1

√
»Du 2

…T Å F1

√
Q1 /N with Q1 givenfiring rate of cell i is

by Eq. 69 .
fi Å Aurui / B Å Auix / B (D1)

where A and B are constants (cf. Eq. 64) and vector ui Å (uix , uiy)
3-D work spaceis of unit length and represents the preferred direction of cell i .

The population vector is defined as We need to consider only a single test direction along the x-
axis: u Å (1, 0, 0) . The method is very similar to that in the case

U Å ∑
N

iÅ1

ciui (D2) of 2-D work space, except that now

with the coefficients given by »u 2
ix …C Å 1/3, »u 2

ix u 2
iy …C Å 1/15, and so on (D11)

ci Å ni 0 tB (D3)
In addition, the error now occurs in both y and z directions so that

where ni is the number of spikes for cell i within the time window
t and the background firing rate B is subtracted to improve recon-

»Du 2
…T É

»U 2
y / U 2

z …T

U 2
x

Å 2 »U 2
y …T

U 2
x

(D12)struction accuracy (Georgopoulus et al. 1988). The x component
of the population vector is estimated as follows

The final result of the average angular error is F2

√
»Du 2

…T Å
Ux Å ∑

N

iÅ1

ciuix É ∑
N

iÅ1

»ci …Tuix F2

√
Q2 /N with Q2 given by Eq. 70 .

Å tA ∑
N

iÅ1

u 2
ix É tAN »u 2

ix …C We thank H. Kudrimoti and W. E. Skaggs for valuable help in data
processing and for many discussions, J. Wang for cluster cutting, M. S.
Lewicki for discussions on Bayesian methods, A. Pouget for discussionsÅ 1/2 tAN (D4)
on population coding and Fisher information, A. B. Schwartz and R. U.
Muller for helpful suggestions on the manuscript, and two anonymousin which the two approximation steps are valid if the number of
reviewers for useful comments. Data acquisition by J. L. Gerrard and C. A.cells N is large. In the above derivation, we have evaluated several
Barnes.averages This work was supported by Howard Hughes Medical Institute and Na-
tional Institute of Neurological Disorders and Stroke Grant NS-20331.»ci …T Å tAuix (D5)
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follows directly from the definition Eq. D3 and the fact that »ni …T Received 27 May 1997; accepted in final form 25 August 1997.Å tfi ; the equations

»u 2
ix …C Å »u 2

iy …C Å 1/2 , »u 2
ix u 2

iy …C Å 1/8 (D6)
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Res. 398: 242–252, 1986. of hippocampal complex-spike cells in a fixed environment. J. Neurosci.
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FÖLDIÁK P. The ‘‘ideal humunculus’’: statistical inference from neural pop- ONO, T., NAKAMURA, K., NISHIJO, H., AND EIFUKU, S. Monkey hippocampal
neurons related to spatial and nonspatial functions. J. Neurophysiol. 70:ulation responses. In: Computation and Neural Systems 1992 , edited by

F. Eeckman and J. Bower. Norwell, MA: Kluwer, 1993. 1516–1529, 1993.
OPTICAN, L. M. AND RICHMOND, B. J. Temporal encoding of two-dimen-GEORGOPOULOS, A. P., KETTNER, R. E., AND SCHWARTZ, A. B. Primate mo-

tor cortex and free arm movements to visual targets in three-dimensional sional patterns by single units in primate inferior temporal cortex. III.
Information theoretic analysis. J. Neurophysiol. 57: 162–178, 1987.space. II. Coding of the direction of movement by a neuronal population.

J. Neurosci. 8: 2928–2937, 1988. PARADISO, M. A. A theory for the use of visual orientation information
which exploits the columnar structure of striate cortex. Biol. Cybern. 58:GEORGOPOULOS, A. P., LURITO, J. T., PETRIDES, M., SCHWARTZ, A. B., AND

MASSEY, J. T. Mental rotation of the neuronal population vector. Science 35–49, 1988.
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